• Acta Photonica Sinica
  • Vol. 49, Issue 9, 0926001 (2020)
Qi-qiang NIU, Yi-ping HUO*, Xue-ying JIANG, Chen ZHOU, Yi-yuan GUO, Yi-bo HOU, Qian HE, and Xiang-xiang HAO
Author Affiliations
  • School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
  • show less
    DOI: 10.3788/gzxb20204909.0926001 Cite this Article
    Qi-qiang NIU, Yi-ping HUO, Xue-ying JIANG, Chen ZHOU, Yi-yuan GUO, Yi-bo HOU, Qian HE, Xiang-xiang HAO. Multiple Magnetic Fano Resonances Based on Single-split Ring and Double-split Disk Structure[J]. Acta Photonica Sinica, 2020, 49(9): 0926001 Copy Citation Text show less
    References

    [1] W L BARNES, A DEREUX, T W EBBESEN. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [2] Gang LI, Wen-jun GUAN, Yan-jun ZHANG. Polarization-controlled optical switch basedon surface plasmon. Acta Photonica Sinica, 49, 0326001(2020).

    [3] Yun-fei YAN, Guan-mao ZHANG, Li-tao QIAO. Designonthe convex ring MIM structure filter based on surface plasmon polaritons. Acta Photonica Sinica, 48, 0223002(2019).

    [4] K K LANCE, E CORONADO, L L ZHAO. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 107, 668-677(2003).

    [5] J J MOCK, D R SMITH, S SCHULTZ. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Letters, 3, 485-491(2003).

    [6] E K PAYNE, K L SHUFORD, S PARK. Multipole plasmon resonances in gold nanorods. Journal of Physical Chemistry B, 110, 2150-2154(2006).

    [7] Guang-hui MA, Jia-bin ZHANG, Xiao-yi WANG. Gold localized surface plasmon enhanced luminescence characteristics of gallium arsenide. Acta Photonica Sinica, 48, 0526002(2019).

    [8] F B ZARRABIA, H KUHESTANIB, M RAHIMIC. Plasmonic cross-junction ring antenna implementation for field Enhancement. Optik, 126, 3129-3131(2015).

    [9] Bing-qian HE, Yong-hong LI, Ya-nan CAO. Tunable fano resonance basedon metal square corestructure embedded in MIM resonator. Acta Photonica Sinica, 47, 174-181(2018).

    [10] K M MAYER, J H HAFNER. Localized surface plasmon resonance sensors. Chemical Reviews, 111, 3828-3857(2011).

    [11] I SOW, , G LEVI. Revisiting surface-enhanced raman scattering on realistic lithographic gold nanostripes. Journal of Physical Chemistry C, 117, 25650-25658(2013).

    [12] Jun DONG, Shi-xian QU, Hai-rong ZHENG. Simultaneous SEF and SERRS from silver fractal-like nanostructure. Sensors and Actuators, B191, 595-599(2014).

    [13] Sen HU, Dan LIU, He-lin YANG. Electromagnetic induced transparency based on all-dielectric metasurface. Acta Photonica Sinica, 047, 211-219(2018).

    [14] Wen-xiang LIM, Ran-jan SINGH. Universal behaviour of high-Q Fano resonances in metamaterials:terahertz to near-infrared regime. Nano Convergence, 5, 0-6(2018).

    [15] A E MIROSHNICHENKO, Y S KIVSHAR. Engineering Fano resonances in discrete arrays. Physical Review E Statistical Nonlinear & Soft Matter Physics, 72, 056611(2005).

    [16] Zhi-qiang ZHU, Yuan-yuan SU, Jiang LI. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Analytical Chemistry, 81, 7660-7666(2009).

    [17] A D KHAN, S D KHAN, R U KHAN. Excitation of multiple fano-like resonances induced by higher order plasmon modes in three-layered bimetallic nanoshell dimer. Plasmonics, 9, 461-475(2014).

    [18] A D KHAN, S D KHAN, R U KHAN. Generation of multiple fano resonances in plasmonic split nanoring dimer. Plasmonics, 9, 1091-1102(2014).

    [19] Shao-ding LIU, Zhi YANG, Rui-ping LIU. Multiple fano resonances in plasmonic heptamer clusters composed of split nanorings. Acs Nano, 6, 6260-6271(2012).

    [20] Jing LI, Yi ZHANG, Tian-qing JIA. High tunability multipolar fano resonances in dual-ring/disk cavities. Plasmonics, 9, 1251-1256(2014).

    [21] D R SMITH, W J PADILLA, D C VIER. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84, 4184-4187(2000).

    [22] Hao ZHANG, Yuan-wei TONG. Tunable pass-band filter based on one dimensional split ring resonant structure. Acta Photonica Sinica, 47, 190-196(2018).

    [23] A N GRIGORENKO, A K GEIM, H F GLESSON. Nanofabricated media with negative permeability at visible frequencies. Nature, 438, 335-338(2005).

    [24] J WANG, C FAN, J HE. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Optics Express, 21, 2236(2013).

    [25] N LIU, S MUKHERJEE, K BAO. Magnetic plasmon formation and propagation in artificial aromatic molecules. Nano Letters, 12, 364-369(2012).

    [26] N LIU, S MUKHERJEE, K BAO. Manipulating magnetic plasmon propagation in metallic nanocluster networks. Acs Nano, 6, 5482-5488(2012).

    [27] J ZHOU, T KOSCHNY, M KAFESAKI. Saturation of the magnetic response of split-ring resonators at optical frequencies. Physical Review Letters, 95, 223902(2005).

    [28] F SHAFIEI, F MONTICONE, K Q LE. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nature Nanotechnology, 8, 95-99(2013).

    [29] Kai-jun ZHAO, Yi-ping HUO, Ting-zhuo LIU. Manipulation of magnetic fano resonances in double split-hole disk. Plasmonics, 11, 269-275(2016).

    [30] A NAZIR, S PANSRO, ZACCARIA R PROIETTI. Fano coil-type resonance for magnetic hot-spot generation. Nano Letters, 14, 3166-3171(2014).

    [31] A S SHOROKHOV, E V MELIK-GAYKAZYAN, D A SMIRNOVA. Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic fano resonances. Nano Letters, 16, 4857-4861(2016).

    [32] C CHERQUI, Yue-ying WU, Guo-liang LI. STEM/EELS imaging of magnetic hybridization in symmetric and symmetry-broken plasmon oligomer dimers and all-magnetic fano interference. Nano Letters, 16, 6668-6676(2016).

    [33] S PANARO, A. NAZIR, Z R PROIETTI. Plasmonic moon:a fano-like approach for squeezing the magnetic field in the infrared. Nano Letters, 15, 6128-6134(2015).

    [34] Yan-jun BAO, Zhi-jian HU, Zi-wei LI. Magnetic plasmonic Fano resonance at optical frequency. Small, 11, 2177-2181(2015).

    [35] S N SHEIKHOLESLAMI, A GARCIA-ETXARRI, J A DIONNE. Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. Nano Letters, 11, 3927-3934(2011).

    [36] A NEMATI, Qian WANG, Ming-hui HONG. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electronic Advances, 1, 180009(2018).

    [37] Shu-ting GUO, Min-cheng CHEN, Yu-hong ZHANG. Observation of Fano resonance in one whispering-gallery-mode microresonator. Acta Photonica Sinica, 48, 1148021(2019).

    [38] Zheng-qi LIU, Gui-qiang LIU, Xiao-shan LIU. Plasmonic sensors with an ultra-high figure of merit. Nanotechnology, 31, 115208(2019).

    [39] Zheng-qi LIU, Mei-dong YU, Shan HUANG. Enhancing refractive index sensing capability with hybrid plasmonic-photonic absorbers. Journal of Materials Chemistry C, 3, 4222-4226(2015).

    [40] P B JOHNSON, R W CHRISTY. Optical constants of the noble metals. Physical Review B (Solid State), 6, 4370-4379(1972).

    [41] J M JIN. The finite element method in electromagnetics(2002).

    [42] Yuan LI, Yi-ping HUO, Ying ZHANG. Generation and manipulation of multiple magnetic Fano resonances in split ring-perfect ring nanostructure. Plasmonics, 12, 1613-1619(2017).

    Qi-qiang NIU, Yi-ping HUO, Xue-ying JIANG, Chen ZHOU, Yi-yuan GUO, Yi-bo HOU, Qian HE, Xiang-xiang HAO. Multiple Magnetic Fano Resonances Based on Single-split Ring and Double-split Disk Structure[J]. Acta Photonica Sinica, 2020, 49(9): 0926001
    Download Citation