• Chinese Journal of Lasers
  • Vol. 42, Issue 8, 806001 (2015)
Zhang Mingjie*, Yang Anping, Zhang Bin, Ren He, Guo Wei, Yang Yan, Zhai Chengcheng, Wang Yuwei, Yang Zhiyong, and Tang Dingyuan
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/cjl201542.0806001 Cite this Article Set citation alerts
    Zhang Mingjie, Yang Anping, Zhang Bin, Ren He, Guo Wei, Yang Yan, Zhai Chengcheng, Wang Yuwei, Yang Zhiyong, Tang Dingyuan. 3~5 μm Luminescence of Dy3+-Doped Ga-Sb-S Chalcogenide Glasses[J]. Chinese Journal of Lasers, 2015, 42(8): 806001 Copy Citation Text show less
    References

    [1] Guo B J, Wang Y, Peng C, et al.. Laser-based mid-infrared reflectance imaging of biological tissues[J]. Opt Express, 2004, 12(1): 208-219.

    [2] Mirov S B, Fedorov V V, Moskalevet I S, et al.. Recent progress in transition-metal-doped II–VI mid-IR lasers[J]. IEEE J Sel Top Quant, 2007, 13(3): 810-822.

    [3] Seddon A B, Tang Z Q, Furniss D, et al.. Progress in rare-earth-doped mid-infrared fiber lasers[J]. Opt Express, 2010, 18(25): 26704-26719.

    [4] Eggleton B J, Davies B L, Richardson K, et al.. Chalcogenide photonics[J]. Nat Photon, 2011, 5(3): 141-148.

    [5] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nat Photon, 2012, 6(7): 423-431.

    [6] Brown E, Hammerich U, Bluiett A G, et al.. Mid-infrared emission properties of Nd-doped lead halides for photonic applications[J]. Mater Sci Eng: B, 2008, 146(1-3): 103-106.

    [7] Schneide J, Carbonnier C, Unrau U B, et al.. Characterization of a Ho3+-doped fluoride fiber laser with a 3.9 μm emission wavelength [J]. Appl Opt, 1997, 36(33): 8595-8600.

    [8] Voronov A A, Kozlovskii V I, Korostelin Y V, et al.. Laser parameters of a Fe: ZnSe laser crystal in the 85~255 K temperature range[J]. Quant Electron, 2005, 35(9): 809-812.

    [9] Fedorov V V, Mirov S B, Gallian A, et al.. 3.77~5.05 μm tunable solid state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures[J]. IEEE J Sel Top Quant, 2006, 42(9): 907-917.

    [10] Lin C G, Dai S X, Liu C, et al.. Mechanism of the enhancement of mid-infrared emission from GeS2-Ga2S3 chalcogenide glassceramics doped with Tm3+[J]. Appl Phys Lett, 2012, 100(23): 231910.

    [11] Charpentier F, Starecki F, Doualan J L, et al.. Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers[J]. Mater Lett, 2013, 101(1): 21-24.

    [12] Djeu N, Hartwell V E, Kaminskii A A, et al.. Room-temperature 3.4-μm Dy: BaYb2F8 laser[J]. Opt Lett, 1997, 22(13):997-999.

    [13] Mirov S, Fedorov V, Moskalev I, et al.. Recent progress in transition metal doped II-VI mid-IR lasers [J]. IEEE J Sel Top Quant Electro, 2007, 13(3): 810-822.

    [14] Heo J, Jang J N, Kim Y S. Optical characteristics of chalcogenide and heavy metal oxide glasses doped with rare earths[C]. SPIE, 1992, 1817: 134-140.

    [15] Schweizer T, Hewak D W, Samson B N, et al.. Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass[J]. J Lumin, 1997, 72(96): 419-421.

    [16] Aggarwal I D, Shaw L B, Sanghera J S. Chalcogenide glass for mid-and long-wave IR fiber lasers[C]. SPIE, 2005, 5709: 242-248.

    [17] Ren J, Wagner T, Bartos M, et al.. Intensity near-infrared and mid-infrared luminescence from the Dy3+-Doped GeSe2-Ge2Se3-MI (M=K, Cs, Ag) chalcohalide glasses at 1.32, 1.73 and 2.67 μm[J]. J Appl Phys, 2011, 109(3): 033105-033112.

    [18] Guo H T, Xu Y T, Chen H Y, et al.. Spectroscopic properties and Judd-Ofelt analysis of Dy3+-doped and Dy3+, Tm3+-codoped Ge-In-S chalcogenide glasses[J]. J Non Cryst Solids, 2013, 377(8): 95-99.

    [19] Moizan V, Nazabal V, Troles J, et al.. Er3 +-doped GeGaSbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy[J]. Opt Mater, 2008, 31(1): 39-46.

    [20] Dai S X, Peng B, Zhang P J, et al.. The near-and mid-infrared emission properties of Tm3+-doped GeGaS-CsI chalcogenide glasses [J]. J Non Cryst Solids, 2010, 356(44-49): 2424-2428.

    [21] Lin H, Chen D Q, Yu Y L, et al.. Enhanced mid-infrared emissions of Er3+ at 2.7 μm via Nd3+ sensitization in chalcohalide glass[J]. Opt Lett, 2011, 36(10): 1815-1817.

    [22] Ichikawa M, Ishikawa Y I, Wakasugi T, et al.. Mid-infrared emissions from Ho3+ in Ga2S3-GeS2-Sb2S3 glass[J]. J Lumin, 2012, 132(3): 784-788.

    [23] Yang Anping, Zhang Mingjie, Yang Zhiyong, et al.. A Type of Sulfide Infrared Glasses and Their Preparation Method: China, CN201410558086. X[P]. 2014-10-20.

    [24] Terra I A A, González L J B, Carvalho J M, et al.. Spectroscopic properties and quantum cutting in Tb3 +-Yb3 + co-doped ZrO2 nanocrystals[J]. J Appl Phys, 2013, 113(7): 073105.

    [25] Shafir I, Nause A, Nagli L, et al.. Mid-infrared luminescence properties of Dy-doped silver halide crystals[J]. Appl Opt, 2011, 50(11): 1625-1630.

    [26] Yang Z Y, Li B T, He F, et al.. Concentration dependence of Dy3 + :1.3 μm luminescence in Ge-Ga-Sb-Se glasses[J]. J Non Cryst Solids, 2008, 354(12): 1198-1200.

    [27] Heo J, Yoon J M, Ryou S Y. Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2-Ga2S3glasses[J]. J Non Cryst Solids, 1998, 238(1): 115-123.

    [28] Ichikawa M, Wakasugi T, Kadono K. Glass formation, physico-chemical properties, and structure of glasses based on Ga2S3-GeS2-Sb2S3 system[J]. J Non Cryst Solids, 2010, 356(43): 2235-2240.

    [29] Musgraves J D, Wachtel P, Gleason B, et al.. Raman spectroscopic analysis of the Ge-As-S chalcogenide glass-forming system[J]. J Non Cryst Solids, 2014, 386: 61-66.

    [30] Kamitsos E I, Kapoutsis J A, Culeac I P, et al.. Structure and bonding in As-Sb-S chalcogenide glasses by infrared reflectance spectroscopy[J]. J Phys Chem B, 1997, 101(51): 11061-11067.

    [31] Lin C G, Li Z B, Ying L, et al.. Network structure in GeS2-Sb2S3 chalcogenide glasses: Raman spectroscopy and phase transformation study[J]. J Phys Chem C, 2012, 116(9): 5862-5867.

    [32] Judd B R. Optical absorption intensities of rare-earth ions[J]. J Phys Rev, 1962, 127(3): 750-761.

    [33] Ofelt G S. Intensities of crystal spectra of rare-earth ions[J]. J Chem Phys, 1962, 37(3): 511-520.

    [34] Chen D Q, Wang Y S, Yu Y L, et al.. Spectroscopic properties of Er3+ ions in transparent oxyfluoride glass ceramics containing CaF2 nano-crystals[J]. J Phys Condens Mat, 2005, 17(41): 6545-6557.

    [35] Yang Z Y, Chen W, Luo L. Dy3+-doped Ge-Ga-Sb-Se glasses for 1.3 μm optical fiber amplifiers[J]. J Non Cryst Solids, 2005, 351(30): 2513-2518.

    [36] Schweizer T, Hewak D W, Samson B N, et al.. Spectroscopic data of the 1.8-, 2.9-, and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass[J]. Opt Lett, 1996, 21(19): 1594-1596.

    CLP Journals

    [1] Zeng Jianghui, Zhang Peiqing, Zhang Qian, Li Xing, Xu Yinsheng, Wang Xunsi, Dai Shixun. Dispersion compensation of chirped fiber grating in chalcogenide fiber laser[J]. Infrared and Laser Engineering, 2017, 46(10): 1005007

    [2] Qian Guoquan, Tang Guowu, Qian Qi, Chen Ganxin. Study on Mid-Infrared Spectral Properties of Ho3+/Yb3+ Co-Doped Fluorogermanate Glasses[J]. Acta Optica Sinica, 2016, 36(6): 616002

    Zhang Mingjie, Yang Anping, Zhang Bin, Ren He, Guo Wei, Yang Yan, Zhai Chengcheng, Wang Yuwei, Yang Zhiyong, Tang Dingyuan. 3~5 μm Luminescence of Dy3+-Doped Ga-Sb-S Chalcogenide Glasses[J]. Chinese Journal of Lasers, 2015, 42(8): 806001
    Download Citation