[1] S. Tu et al. Piezocatalysis and piezo-photocatalysis: Catalysts classification and modification strategy, reaction mechanism, and practical application. Adv. Funct. Mater., 30, 2005158(2020).
[2] H. Li et al. High piezocatalytic capability in CuS/MoS2 nanocomposites using mechanical energy for degrading pollutants. J. Colloid Interface Sci., 609, 657(2022).
[3] L. Shi et al. Piezocatalytic performance of Na0.5Bi0.5TiO3 nanoparticles for degradation of organic pollutants. J. Alloys Compd., 895, 162591(2022).
[4] Y. Feng et al. Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis. Nano Energy, 40, 481(2017).
[5] L. Pan et al. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv. Energy Mater., 10, 2000214(2020).
[6] J. Shi et al. Enhanced piezo-photocatalytic performance of Ag@Na0.5Bi0.5TiO3 composites. J. Alloys Compd., 911, 164885(2022).
[7] C. Dong et al. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs). Chemosphere, 308, 136205(2022).
[8] Y. Bao et al. Wastewater decontamination via piezoelectric based technologies: Materials design, applications and prospects. Surf. Interfaces, 40, 1031107(2023).
[9] C. Hu et al. Orthogonal charge transfer by precise positioning of silver single atoms and clusters on carbon nitride for efficient piezocatalytic pure water splitting. Angew. Chem. Int. Ed., 61, 12397(2022).
[10] C. Hu et al. Coupling piezocatalysis and photocatalysis in Bi4NbO8X (X = Cl, Br) polar single crystals. Adv. Funct. Mater., 30, 1908168(2019).
[11] Q. T. Hoang et al. Piezoelectric Au-decorated ZnO nanorods: Ultrasound-triggered generation of ROS for piezocatalytic cancer therapy. Chem. Eng. J., 35, 135039(2022).
[12] S. Chen et al. Piezocatalytic medicine: An emerging frontier using piezoelectric materials for biomedical applications. Adv. Mater., 35, 2208256(2023).
[13] A. Ali et al. Piezocatalytic removal of water bacteria and organic compounds: A review. Environ. Chem. Lett., 21, 1075(2022).
[14] Y. Zhang et al. Progress in lead-free piezoelectric nanofiller materials and related composite nanogenerator devices. Nanoscale Adv., 2, 3131(2020).
[15] W. Liu et al. Prospective of (BaCa)(ZrTi)O3 lead-free piezoelectric ceramics. Crystals, 9, 179(2019).
[16] X. Wang et al. Enhancement of electro-strain performance of KTaO3 modified 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics. J. Adv. Dielectr., 12, 225014(2022).
[17] J. Guan et al. Enhancement of piezoelectric catalysis of Na0.5Bi0.5TiO3 with electric poling for dye decomposition. Ceram. Int., 48, 3695(2022).
[18] X. Zhu et al. Boosting piezocatalytic activity of Bi5Ti3FeO15/BiOCl heterostructured nanocomposites for degrading multiple dyes and antibiotics. ACS Appl. Nano Mater., 7, 1885(2024).
[19] Y. Zheng et al. Sm-doped (1–x) Pb(Mg1∕3Nb2∕3)O3-xPbTiO3 nanostructures for piezocatalytic dye degradation. ACS Appl. Nano Mater., 5, 277(2022).
[20] Y. Zheng et al. Highly efficient harvesting of vibration energy for complex wastewater purification using Bi5Ti3FeO15 with controlled oxygen vacancies. Chem. Eng. J., 453, 139919(2023).
[21] Y. Zhang et al. Water flow induced piezoelectric polarization and sulfur vacancy boosting photocatalytic hydrogen peroxide evolution of cadmium sulfide nanorods. Appl. Catal. B: Environ., 331, 122714(2023).
[22] N. A. Shvetsova et al. Microstructure characterization and properties of porous piezoceramics. J. Adv. Dielectr., 12, 2160006(2021).
[23] I. A. Shvetsov et al. Dispersion characteristics of complex electromechanical parameters of porous piezoceramics. J. Adv. Dielectr., 12, 2160004(2021).
[24] S. Zhang et al. In situ TEM observations of growth mechanisms of PbO nanoparticles from a Sm-doped PMN-PT matrix. Nanoscale, 14, 13801(2022).
[25] Z. Liu et al. (1−x) Bi0.5Na0.5TiO3–xBiFeO3 solid solutions with enhanced piezocatalytic dye degradation. Sep. Purif. Technol., 290, 120831(2022).
[26] F. Meng et al. Synergistic enhancement of redox pairs and functional groups for the removal of phenolic organic pollutants by activated PMS using silica-composited biochar: Mechanism and environmental toxicity assessment. Chemosphere, 337, 139441(2023).
[27] E. Lin et al. BaTiO3 nanocubes/cuboids with selectively deposited Ag nanoparticles: Efficient piezocatalytic degradation and mechanism. Appl. Catal. B: Environ., 285, 119823(2021).
[28] Q. Liu et al. Upcycling waste plastics into FeNi@CNTs chainmail catalysts for effective degradation of norfloxacin: The synergy between metal core and CNTs shell. Sep. Purif. Technol., 326, 124735(2023).
[29] J. Guo et al. Fenton-like activity and pathway modulation via single-atom sites and pollutants comediates the electron transfer process. Proc. Natl. Acad. Sci. USA, 121, e2313387121(2024).
[30] C. Wang et al. Efficient piezocatalytic H2O2 production of atomic-level thickness Bi4Ti3O12 nanosheets with surface oxygen vacancy. Chem. Eng. J., 431, 133930(2022).
[31] K. Wang et al. Sacrificial-agent-free artificial photosynthesis of hydrogen peroxide over step-scheme WO3/NiS hybrid nanofibers. Appl. Catal. B: Environ., 342, 123349(2024).
[32] A. J. E. Rettie et al. Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: Intrinsic behavior of a complex metal oxide. J. Am. Chem. Soc., 135, 11389(2013).
[33] T. Freese et al. An organic perspective on photocatalytic production of hydrogen peroxide. Nat. Catal., 6, 553(2023).