[1] P. Coullet, G. Gil, F. Rocca. Optical vortices. Opt. Commun., 73, 403(1989).
[2] M. R. Dennis, K. O’Holleran, M. J. Padgett. Singular optics: optical vortices and polarization singularities. Prog. Opt., 53, 293(2009).
[3] V. Y. Bazhenov, M. S. Soskin, M. V. Vasnetsov. Screw dislocations in light wavefronts. J. Mod. Opt., 39, 985(1992).
[4] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185(1992).
[5] M. A. Bandres, J. C. Gutiérrez-Vega. Ince–Gaussian beams. Opt. Lett., 29, 144(2004).
[6] K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda et al. Orbital angular momentum of a high-order Bessel light beam. J. Opt. B, 4, S82(2002).
[7] S. Chávez-Cerda, M. J. Padgett, I. Allison et al. Holographic generation and orbital angular momentum of high-order Mathieu beams. J. Opt. B, 4, S52(2002).
[8] Y. Zhang, X. Liu, M. R. Belić et al. Anharmonic propagation of two-dimensional beams carrying orbital angular momentum in a harmonic potential. Opt. Lett., 40, 3786(2015).
[9] N. Bozinovic, Y. Yue, Y. Ren et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545(2013).
[10] B. Ung, P. Vaity, L. Wang et al. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes. Opt. Express, 22, 18044(2014).
[11] A. Wang, L. Zhu, L. Wang et al. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Opt. Express, 26, 10038(2018).
[12] Y. Yue, Y. Yan, N. Ahmed et al. Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber. IEEE Photon. J., 4, 535(2012).
[13] C. Brunet, B. Ung, L. Wang et al. Design of a family of ring-core fibers for OAM transmission studies. Opt. Express, 23, 10553(2015).
[14] S. Ramachandran, P. Gregg, P. Kristensen et al. On the scalability of ring fiber designs for OAM multiplexing. Opt. Express, 23, 3721(2015).
[15] D. G. Hall. Vector-beam solutions of Maxwell’s wave equation. Opt. Lett., 21, 9(1996).
[16] Q. Zhan, J. R. Leger. Focus shaping using cylindrical vector beams. Opt. Express, 10, 324(2002).
[17] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics, 1, 1(2009).
[18] C. Brunet, B. Ung, P.-A. Belanger et al. Vector mode analysis of ring-core fibers: design tools for spatial division multiplexing. J. Lightwave Technol., 32, 4648(2014).
[19] J. Liu, S.-M. Li, L. Zhu et al. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light Sci. Appl., 7, 17148(2018).
[20] J. Wang, J.-Y. Yang, I. M. Fazal et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488(2012).
[21] J. Wang. Advances in communications using optical vortices. Photonics Res., 4, B14(2016).
[22] Y. Yan, G. Xie, M. P. J. Lavery et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun., 5, 4876(2014).
[23] A. E. Willner, H. Huang, Y. Yan et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 7, 66(2015).
[24] A. Trichili, A. B. Salem, A. Dudley et al. Encoding information using Laguerre Gaussian modes over free space turbulence media. Opt. Lett., 41, 3086(2016).
[25] M. Mafu, A. Dudley, S. Goyal et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A, 88, 032305(2013).
[26] J. Leach, B. Jack, J. Romero et al. Quantum correlations in optical angle-orbital angular momentum variables. Science, 329, 662(2010).
[27] X.-L. Wang, X.-D. Cai, Z.-E. Su et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 518, 516(2015).
[28] A. Sit, F. Bouchard, R. Fickler et al. High-dimensional intracity quantum cryptography with structured photons. Optica, 4, 1006(2017).
[29] M. Erhard, R. Fickler, M. Krenn et al. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl., 7, 17146(2018).
[30] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated emission-depletion fluorescence microscopy. Opt. Lett., 19, 780(1994).
[31] P. S. Tan, X. C. Yuan, G. H. Yuan et al. High-resolution wide-field standing-wave surface plasmon resonance fluorescence microscopy with optical vortices. Appl. Phys. Lett., 97, 241109(2010).
[32] C. Zhang, C. Min, L. Du et al. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging. Appl. Phys. Lett., 108, 201601(2016).
[33] M. Ritsch-Marte. Orbital angular momentum light in microscopy. Philos. Trans. R. Soc. Lond. A, 375, 20150437(2017).
[34] Y. Kozawa, D. Matsunaga, S. Sato. Superresolution imaging via superoscillation focusing of a radially polarized beam. Optica, 5, 86(2018).
[35] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810(2003).
[36] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343(2011).
[37] S. H. Tao, X.-C. Yuan, J. Lin et al. Fractional optical vortex beam induced rotation of particles. Opt. Express, 13, 7726(2005).
[38] Y. Kozawa, S. Sato. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Opt. Express, 18, 10828(2010).
[39] Y. Q. Zhang, J. F. Shen, C. J. Min et al. Nonlinearity-Induced multiplexed optical trapping and manipulation with femtosecond vector beams. Nano Lett., 18, 5538(2018).
[40] M. P. J. Lavery, F. C. Speirits, S. M. Barnett et al. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537(2013).
[41] S. Y. Fu, C. Q. Gao. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams. Photonics Res., 4, B1(2016).
[42] L. Fang, Z. Wan, A. Forbes et al. Vectorial Doppler metrology. Nat. Commun., 12, 4186(2021).
[43] D. M. Fatkhiev, M. A. Butt, E. P. Grakhova et al. Recent advances in generation and detection of orbital angular momentum optical beams—a review. Sensors, 21, 4988(2021).
[44] J. Du, R. Zhang, Z. Zhao et al. Single-pixel identification of 2-dimensional objects by using complex Laguerre–Gaussian spectrum containing both azimuthal and radial modal indices. Opt. Commun., 481, 126557(2021).
[45] L. Zhu, M. Tang, H. Li et al. Optical vortex lattice: an exploitation of orbital angular momentum. Nanophotonics, 10, 2487(2021).
[46] Y. Liu, J. Pu, B. Lü. Method for exploring the orbital angular momentum of an optical vortex beam with a triangular multipoint plate. Appl. Opt., 50, 4844(2011).
[47] A. Kapoor, M. Kumar, P. Senthilkumaran et al. Optical vortex array in spatially varying lattice. Opt. Commun., 365, 99(2016).
[48] D. A. Ikonnikov, S. A. Myslivets, V. G. Arkhipkin et al. 3D optical vortex lattices. Ann. Phys., 533, 2100114(2021).
[49] S. Schwarz, C. Kapahi, R. Xu et al. Talbot effect of orbital angular momentum lattices with single photons. Phys. Rev. A, 101, 043815(2020).
[50] A. R. Cameron, S. W. L. Cheng, S. Schwarz et al. Remote state preparation of single-photon orbital-angular-momentum lattices. Phys. Rev. A, 104, L051701(2021).
[51] J. Masajada, B. Dubik. Optical vortex generation by three plane wave interference. Opt. Commun., 198, 21(2001).
[52] S. Vyas, P. Senthilkumaran. Interferometric optical vortex array generator. Appl. Opt., 46, 2893(2007).
[53] S. Vyas, P. Senthilkumaran. Vortex array generation by interference of spherical waves. Appl. Opt., 46, 7862(2007).
[54] K. O’Holleran, M. J. Padgett, M. R. Dennis. Topology of optical vortex lines formed by the interference of three, four, and five plane waves. Opt. Express, 14, 3039(2006).
[55] V. Bazhenov, M. Vasnetsov, M. Soskin. Laser beams with screw dislocations in their wavefronts. JETP Lett., 52, 429(1990).
[56] G. Kim, J. Jeon, K. Ko et al. Optical vortices produced with a nonspiral phase plate. Appl. Opt., 36, 8614(1997).
[57] C. Guo, Y. Zhang, Y. Han et al. Generation of optical vortices with arbitrary shape and array via helical phase spatial filtering. Opt. Commun., 259, 449(2006).
[58] G. Lazarev, A. Hermerschmidt, S. Krueger et al. LCOS spatial light modulators: trends and applications. Optical Imaging and Metrology: Advanced Technologies, 1(2012).
[59] H. Ma, X. Li, Y. Tai et al. Generation of circular optical vortex array. Ann. Phys., 529, 1700285(2017).
[60] W. T. Chen, A. Y. Zhu, F. Capasso. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater., 5, 604(2020).
[61] J. Jin, M. Pu, Y. Wang et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial. Adv. Mater. Technol., 2, 1600201(2016).
[62] L. Huang, X. Song, B. Reineke et al. Volumetric generation of optical vortices with metasurfaces. ACS Photonics, 4, 338(2017).
[63] Z. Li, H. Liu, X. Zhang et al. Metasurface of deflection prism phases for generating non-diffracting optical vortex lattices. Opt. Express, 26, 28228(2018).
[64] H. Gao, Y. Li, L. Chen et al. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design. Nanoscale, 10, 666(2018).
[65] J. Jin, X. Li, M. Pu et al. Wavelength-dependent three-dimensional volumetric optical vortices modulation based on metasurface. IEEE Photon. J., 10, 4502008(2018).
[66] J. Jin, X. Li, M. Pu et al. Angular-multiplexed multichannel optical vortex arrays generators based on geometric metasurface. iScience, 24, 102107(2021).
[67] D. Wen, K. Pan, J. Meng et al. Broadband multichannel cylindrical vector beam generation by a single metasurface. Laser Photonics Rev., 16, 2200206(2022).
[68] K. Ladavac, D. G. Grier. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express, 12, 1144(2004).
[69] Y. C. Lin, T. H. Lu, K. F. Huang et al. Generation of optical vortex array with transformation of standing-wave Laguerre-Gaussian mode. Opt. Express, 19, 10293(2011).
[70] B. Son, S. Kim, Y. H. Kim et al. Optical vortex arrays from smectic liquid crystals. Opt. Express, 22, 4699(2014).
[71] Y. Chen, K. Xia, W. Shen et al. Vector vortex beam emitter embedded in a photonic chip. Phys. Rev. Lett., 124, 153601(2020).
[72] Y. Zhao, Jian Wang. Integrated compact vertical cavity surface emitting orbital angular momentum laser. Asia Communications and Photonics Conference (ACP), 1(2014).
[73] X. Cai, J. Wang, M. J. Strain et al. Integrated compact optical vortex beam emitters. Science, 338, 363(2012).
[74] J. Du, J. Wang. Chip-scale optical vortex lattice generator on a silicon platform. Opt. Lett., 42, 5054(2017).
[75] X. Cao, N. Zhou, S. Zheng et al. Digitized subwavelength surface structure on silicon platform for wavelength-/polarization-/charge-diverse optical vortex generation. Nanophotonics, 11, 4551(2022).
[76] H. Song, Z. Zhao, R. Zhang et al. Utilizing phase delays of an integrated pixel-array structure to generate orbital-angular-momentum beams with tunable orders and a broad bandwidth. Opt. Lett., 45, 4144(2020).
[77] Y. Zhu, H. Tan, N. Zhou et al. Compact high-efficiency four-mode vortex beam generator within the telecom C-band. Opt. Lett., 45, 1607(2020).
[78] J. Wang, S. Li, M. Luo et al. N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes. European Conference and Exhibition on Optical Communication (ECOC), Mo.4.5.1(2014).
[79] G. Gibson, J. Courtial, M. Padgett et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448(2004).
[80] J. Du, J. Wang. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions. Opt. Lett., 40, 4827(2015).
[81] S. Li, J. Wang. Experimental demonstration of optical interconnects exploiting orbital angular momentum array. Opt. Express, 25, 21537(2017).
[82] X. Li, Y. Li, X. Zeng et al. Perfect optical vortex array for optical communication based on orbital angular momentum shift keying. J. Opt., 20, 125604(2018).
[83] X. Liu, S. Huang, C. Li. Color image information transmission based on elliptic optical vortex array encoding/decoding. Opt. Express, 31, 29755(2023).
[84] Y. Zhao, J. Wang. High-base vector beam encoding/decoding for visible-light communications. Opt. Lett., 40, 4843(2015).
[85] X. Wang, Y. Song, Q. Zhang et al. Hybrid multiplexing and encoding/decoding based on the spatial coordinates and mode states of vector beams in free space. Opt. Eng., 57, 094107(2018).
[86] A. Ostrovsky, C. Rickenstorff-Parrao, V. Arrizón. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt. Lett., 38, 534(2013).
[87] A. A. Kovalev, V. V. Kotlyar, A. P. Porfirev. A highly efficient element for generating elliptic perfect optical vortices. Appl. Phys. Lett., 110, 261102(2017).
[88] Z. Long, H. Hu, X. Ma et al. Encoding and decoding communications based on perfect vector optical vortex arrays. J. Phys. D, 55, 435105(2022).
[89] J. E. Curtis, B. A. Koss, D. G. Grier. Dynamic holographic optical tweezers. Opt. Commun., 207, 169(2002).
[90] P. A. Prentice, M. P. MacDonald, T. G. Frank et al. Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays. Opt. Express, 12, 593(2004).
[91] C.-F. Kuo, S.-C. Chu. Numerical study of the properties of optical vortex array laser tweezers. Opt. Express, 21, 26418(2013).
[92] X. Li, Y. Zhou, Y. Cai et al. Generation of hybrid optical trap array by holographic optical tweezers. Front. Phys. Lausanne, 9, 591747(2021).
[93] D. Liu, B. Gao, F. Wang et al. Experimental realization of tunable finite square optical arrays. Opt. Laser Technol., 153, 108220(2022).
[94] X. Fang, H. Ren, M. Gu. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102(2019).
[95] L. Zhu, A. Wang, M. Deng et al. Experimental demonstration of multiple dimensional coding decoding for image transfer with controllable vortex arrays. Sci. Rep., 11, 12012(2021).
[96] P. Kumar, N. K. Nishchal, A. AlFalou. Controllable optical vortex array for image encoding. IEEE Photon. Tech. Lett., 34, 521(2022).
[97] N. Zhang, B. Xiong, X. Zhang et al. Spatially multiple-dimensional orbital angular momentum multiplexed holography for information encryption. Results Phys., 52, 106823(2023).
[98] E. Arbabi, S. M. Kamali, A. Arbabi et al. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation. ACS Photonics, 6, 2712(2019).
[99] Z. L. Deng, M. Jin, X. Ye et al. Full-Color complex-amplitude vectorial holograms based on multi-freedom metasurfaces. Adv. Funct. Mater., 30, 1910610(2020).
[100] A. W. Lohmann, D. E. Silva. An interferometer based on the Talbot effect. Opt. Commun., 2, 413(1971).
[101] P. Senthilkumaran, J. Masajada, S. Sato. Interferometry with vortices. Int. J. Opt., 18, 517591(2012).
[102] S. A. Eastwood, A. I. Bishop, T. C. Petersen et al. Phase measurement using an optical vortex lattice produced with a three-beam interferometer. Opt. Express, 20, 13947(2012).
[103] T. C. Petersen, A. I. Bishop, S. A. Eastwood et al. Singularimetry of local phase gradients using vortex lattices and in-line holography. Opt. Express, 24, 2259(2016).
[104] X. Zhao, Z. Wang, X. Lu et al. Ultrahigh precision angular velocity measurement using frequency shift of partially coherent beams. Laser Photonics Rev., 17, 2300318(2023).
[105] A. Mair, A. Vaziri, G. Weihs et al. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313(2001).
[106] X. Luo, X. Zhou, J. Xu et al. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light. Nat. Commun., 8, 16097(2017).
[107] J. Masajada. Small-angle rotations measurement using optical vortex interferometer. Opt. Commun., 239, 373(2004).
[108] A. Ji, W. M. Liu, J. L. Song et al. Dynamical creation of fractionalized vortices and vortex lattices. Phys. Rev. Lett., 101, 010402(2008).
[109] S. Schwarz, C. Kapahi, R. Xu et al. Talbot effect of orbital angular momentum lattices with single photons. Phys. Rev. A, 101, 043815(2020).
[110] S.-W. Moon, Y. Kim, G. Yoon et al. Recent progress on ultrathin metalenses for flat optics. iScience, 23, 101877(2020).
[111] M. A. Tran, D. Huang, J. E. Bowers. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photonics, 4, 111101(2019).
[112] Y. Liu, Z. Qiu, X. Ji et al. A photonic integrated circuit based erbium-doped amplifier. Science, 376, 1309(2022).
[113] Q. Huang, X. Lu, H. Zhang et al. Economical generation of high-quality optical vortices with gradual-width Fermat spiral slit mask. Sci. China Phys. Mech. Astron., 66, 244211(2023).
[114] Y. Ren, Z. Wang, G. Xie et al. Atmospheric turbulence mitigation in an OAM-based MIMO free-space optical link using spatial diversity combined with MIMO equalization. Opt. Lett., 41, 2406(2016).
[115] L. Li, H. Song, R. Zhang et al. Increasing system tolerance to turbulence in a 100-Gbit/s QPSK free-space optical link using both mode and space diversity. Opt. Commun., 480, 126488(2021).