• Frontiers of Optoelectronics
  • Vol. 6, Issue 4, 418 (2013)
Debin NI1, Dong YANG2, Shuying MA1, Guoli TU1、*, and Jian ZHANG2
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory of Clean Energy, Dalian 116023, China
  • show less
    DOI: 10.1007/s12200-013-0343-9 Cite this Article
    Debin NI, Dong YANG, Shuying MA, Guoli TU, Jian ZHANG. Side chains and backbone structures influence on 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based low-bandgap conjugated copolymers for organic photovoltaics[J]. Frontiers of Optoelectronics, 2013, 6(4): 418 Copy Citation Text show less
    References

    [1] Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789-1791

    [2] Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells. Advanced Functional Materials, 2001, 11(1): 15-26

    [3] Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells. Chemistry of Materials, 2004, 16(23): 4533-4542

    [4] Gunes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells. Chemical Reviews, 2007, 107(4): 1324-1338

    [5] Ma W, Yang C, Gong X, Lee K, Heeger A J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials, 2005, 15(10): 1617-1622

    [6] Reyes-Reyes M, Kim K, Carroll D L. High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61blends. Applied Physics Letters, 2005, 87(8): 083506-083508

    [7] Qin R P, Li W W, Li C H, Du C, Veit C, Schleiermacher H F, Andersson M, Bo Z, Liu Z P, Inganas O, Wuerfel U, Zhang F L. A planar copolymer for high efficiency polymer solar cells. Journal of the American Chemical Society, 2009, 131(41): 14612-14613

    [8] Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J, Bazan GC. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials, 2007, 6(7): 497-500

    [9] Thompson B C, Frechet J M J. Polymer-fullerene composite solar cells. Angewandte Chemie International Edition, 2007, 47(1): 58-77

    [10] Kim Y, Cook S, Tuladhar S M, Choulis S A, Nelson J, Durrant J R, Bradley D D C, Giles M, McCulloch I, Ha C S, Ree M. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nature Materials, 2006, 5(3): 197-203

    [11] Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005, 4(11): 864-868

    [12] Shi C J, Yao Y, Yang Y, Pei Q B. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application. Journal of the American Chemical Society, 2006, 128(27): 8980-8986

    [13] Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin P G, Kim Y, Anthopoulos T D, Stavrinou P N, Bradley D D C, Nelson J. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nature Materials, 2008, 7(2): 158-164

    [14] Zhao G J, He Y J, Li Y F. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Advanced Materials, 2010, 22(39): 4355-4358

    [15] Chang C Y,Wu C E, Chen S Y, Cui C H, Cheng Y J, Hsu C S,Wang Y L, Li Y F. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. Angewandte Chemie International Edition, 2011, 50(40): 9386-9390

    [16] He F,Wang W, Chen W, Xu T, Darling S B, Strzalka J, Liu Y, Yu L P. Tetrathienoanthracene-based copolymers for efficient solar cells. Journal of the American Chemical Society, 2011, 133(10): 3284-3287

    [17] Piliego C, Holcombe T W, Douglas J D, Woo C H, Beaujuge P M, Frechet J M J. Synthetic control of structural order in N-alkylthieno [3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. Journal of the American Chemical Society, 2010, 132(22): 7595-7597

    [18] Chen H Y, Hou J H, Zhang S Q, Liang Y Y, Yang G W, Yang Y, Yu L P, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics, 2009, 3(11): 649-653

    [19] Price S C, Stuart A C, Yang L Q, Zhou H X, You W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. Journal of the American Chemical Society, 2011, 133(12): 4625-4631

    [20] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J. Efficient tandem polymer solar cells fabricated by allsolution processing. Science, 2007, 317(5835): 222-225

    [21] Wang E, Hou L T, Wang Z Q, Hellstrm S, Zhang F L, Inganas O, Andersson M R. An easily synthesized blue polymer for highperformance polymer solar cells. Advanced Materials, 2010, 22(46): 5240-5244

    [22] Amb C M, Chen S, Graham K R, Subbiah J, Small C E, So F, Reynolds J R. Dithienogermole as a fused electron donor in bulk heterojunction solar cells. Journal of the American Chemical Society, 2011, 133(26): 10062-10065

    [23] Chang C Y,Wu C E, Chen S Y, Cui C H, Cheng Y J, Hsu C S,Wang Y L, Li Y F. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. Angewandte Chemie International Edition, 2011, 50(40): 9386-9390

    [24] Jin J K, Choi J K, Kim B J, Kang H B, Yoon S C, You H, Jung H T. Synthesis and photovoltaic performance of low-bandgap polymers on the basis of 9,9-dialkyl-3,6-dialkyloxysilafluorene. Macromolecules, 2011, 44(3): 502-511

    [25] Peng Q, Liu X J, Su D, Fu G W, Xu J, Dai L M. Novel benzo[1,2-b:4,5-b’]dithiophene-benzothiadiazole derivatives with variable side chains for high-performance solar cells. Advanced Materials, 2011, 23(39): 4554-4558

    [26] Huo L J, Guo X, Zhang S Q, Li Y F, Hou J H. PBDTTTZ: a broad band gap conjugated polymer with high photovoltaic performance in polymer solar cells. Macromolecules, 2011, 44(11): 4035-4037

    [27] Dou L T, You J B, Yang J, Chen C C, He Y J, Murase S, Moriarty T, Emery K, Li G, Yang Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics, 2012, 6(3): 180-185

    [28] Li G, Zhu R, Yang Y. Polymer solar cells. Nature Photonics, 2012, 6(3): 153-161

    [29] Scharber M C, Muhlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J. Design rules for donors in bulkheterojunction solar cells—towards 10% energy-conversion efficiency. Advanced Materials, 2006, 18(6): 789-794

    [30] Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletete M, Durocher G, Tao Y, Leclerc M. Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. Journal of the American Chemical Society, 2008, 130(2): 732-742

    [31] Huo L J, Hou J H, Chen H Y, Zhang S Q, Jiang Y, Chen T L, Yang Y. Bandgap and molecular level control of the low-bandgap polymers based on 3,6-dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c] pyrrole-1,4-dione toward highly efficient polymer solar cells. Macromolecules, 2009, 42(17): 6564-6571

    [32] Liang Y Y, Feng D Q,Wu Y, Tsai S T, Li G, Ray C, Yu L P. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. Journal of the American Chemical Society, 2009, 131(22): 7792-7799

    [33] Zoombelt A P, Fonrodona M,WienkMM, Sieval A B, Hummelen J C, Janssen R A J. Photovoltaic performance of an ultrasmall band gap polymer. Organic Letters, 2009, 11(4): 903-906

    [34] Mondal R, Ko S, Norton J E, Miyaki N, Becerril H A, Verploegen E, Toney M F, Bredas J L, McGehee M D, Bao Z N. Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering. Journal of Materials Chemistry, 2009, 19(39): 7195-7197

    [35] Dhanabalan A, Van Duren J K J, Van Hal P A, Van Dongen J L J, Janssen R A J. Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells. Advanced Functional Materials, 2001, 11(4): 255-262

    [36] Boudreault P L T, Michaud A, Leclerc M. A new poly(2,7-Dibenzosilole) derivative in polymer solar cells. Macromolecular Rapid Communications, 2007, 28(22): 2176-2179

    [37] Song S, Jin Y, Kim S H, Moon J, Kim K, Kim J Y, Park S H, Lee K, Suh H. Stabilized polymers with novel indenoindene backbone against photodegradation for LEDs and solar cells. Macromolecules, 2008, 41(20): 7296-7305

    [38] Moule A J, Tsami A, Bunnagel T W, Forster M, Kronenberg N M, Scharber M, Koppe M, Morana M, Brabec C J, Meerholz K, Scherf U. Two novel cyclopentadithiophene-based alternating copolymers as potential donor components for high-efficiency bulkheterojunction-type solar cells. Chemistry of Materials, 2008, 20(12): 4045-4050

    [39] Liao L, Dai L M, Smith A, Durstock M, Lu J P, Ding J F, Tao Y. Photovoltaic-active dithienosilole-containing polymers. Macromolecules, 2007, 40(26): 9406-9412

    [40] Zhou E, Nakamura M, Nishizawa T, Zhang Y, Wei Q S, Tajima K, Yang C H, Hashimoto K. Synthesis and photovoltaic properties of a novel low band gap polymer based on N-substituted dithieno[3,2-b:2′,3′-d]pyrrole. Macromolecules, 2008, 41(22): 8302-8305

    [41] Wang M, Hu X W, Liu P, Li W, Gong X, Huang F, Cao Y. Donoracceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis [1,2,5]thiadiazole for high-performance polymer solar cells. Journal of the American Chemical Society, 2011, 133(25): 9638-9641

    [42] Zhou H X, Yang L Q, Xiao S Q, Liu S B, You W. Donor - acceptor polymers incorporating alkylated dithienylbenzothiadiazole for bulk heterojunction solar cells: pronounced effect of positioning alkyl chains. Macromolecules, 2009, 43(2): 811-820

    [43] Svensson M, Zhang F, Veenstra S C, VerheesWJ H, Hummelen J C, Kroon J M, Inganas O, Andersson M R. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Advanced Materials, 2003, 15(12): 988-991

    [44] Inganas O, Svensson M, Zhang F, Gadisa A, Persson N K,Wang X, Andersson M R. Low bandgap alternating polyfluorene copolymers in plastic photodiodes and solar cells. Applied Physics A, 2004, 79(1): 31-35

    [45] Chen M H, Hou J H, Hong Z, Yang G W, Sista S, Chen L M, Yang Y. Efficient polymer solar cells with thin active layers based on alternating polyfluorene copolymer/fullerene bulk heterojunctions. Advanced Materials, 2009, 21(42): 4238-4242

    [46] Lee S K, Cho S, Tong M, Seo J H, Heeger A J. Effects of substituted side-chain position on donor-acceptor conjugated copolymers. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49(8): 1821-1829

    [47] Blouin N, Michaud A, Leclerc M. A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Advanced Materials, 2007, 19(17): 2295-2300

    [48] Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics, 2009, 3(5): 297-302

    [49] Kline R J, McGehee M D, Kadnikova E N, Liu J S, Frechet J M J, Toney M F. Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules, 2005, 38(8): 3312-3319

    [50] Schilinsky P, Asawapirom U, Scherf U, Biele M, Brabec C J. Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells. Chemistry of Materials, 2005, 17(8): 2175-2180

    [51] Koppe M, Brabec C J, Heiml S, Schausberger A, Duffy W, Heeney M, McCulloch I. Influence of molecular weight distribution on the gelation of P3HT and its impact on the photovoltaic performance. Macromolecules, 2009, 42(13): 4661-4666

    [52] Osaka I, Saito M, Mori H, Koganezawa T, Takimiya K. Drastic change of molecular orientation in a thiazolothiazole copolymer by molecular-weight control and blending with PC61BM leads to high efficiencies in solar cells. Advanced Materials, 2012, 24(3): 425-430

    [53] Muller C, Wang E, Andersson L M, Tvingstedt K, Zhou Y, Andersson M R, Inganas O. Influence of molecular weight on the performance of organic solar cells based on a fluorene derivative. Advanced Functional Materials, 2010, 20(13): 2124-2131

    [54] Chu T Y, Alem S, Tsang S W, Tse S C,Wakim S, Lu J P, Dennler G, Waller D, Gaudiana R, Tao Y. Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance. Applied Physics Letters, 2011, 98(25): 253301-253303

    [55] Admassie S, Inganas O, Mammo W, Perzon E, Andersson M R. Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers. Synthetic Metals, 2006, 156(7-8): 614-623

    [56] Koeckelberghs G, Cremer L D, Persoons A, Verbiest T. Influence of the substituent and polymerization methodology on the properties of chiral poly(dithieno[3,2-b:2′,3′-d]pyrrole)s. Macromolecules, 2007, 40(12): 4173-4181

    Debin NI, Dong YANG, Shuying MA, Guoli TU, Jian ZHANG. Side chains and backbone structures influence on 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT)-based low-bandgap conjugated copolymers for organic photovoltaics[J]. Frontiers of Optoelectronics, 2013, 6(4): 418
    Download Citation