• Photonics Research
  • Vol. 11, Issue 3, 431 (2023)
Fan Huang1, Quan Xu1、4、*, Wanying Liu1, Tong Wu1, Jianqiang Gu1、5、*, Jiaguang Han1、2, and Weili Zhang3
Author Affiliations
  • 1Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University and Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin 300072, China
  • 2Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
  • 3School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
  • 4e-mail: quanxu@tju.edu.cn
  • 5e-mail: gjq@tju.edu.cn
  • show less
    DOI: 10.1364/PRJ.476120 Cite this Article Set citation alerts
    Fan Huang, Quan Xu, Wanying Liu, Tong Wu, Jianqiang Gu, Jiaguang Han, Weili Zhang. Generating superposed terahertz perfect vortices via a spin-multiplexed all-dielectric metasurface[J]. Photonics Research, 2023, 11(3): 431 Copy Citation Text show less
    References

    [1] M. Born, E. Wolf. Principles of Optics(1997).

    [2] R. A. Beth. Mechanical detection and measurement of the angular momentum of light. Phys. Rev., 50, 115-125(1936).

    [3] L. Allen, M. W. Beijersbergen, R. Spreeuw, J. J. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [4] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, J. J. Courtial. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett., 88, 257901(2002).

    [5] A. O’neil, I. MacVicar, L. Allen, M. J. Padgett. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett., 88, 053601(2002).

    [6] S. M. Barnett, L. J. Allen. Orbital angular momentum and nonparaxial light beams. Opt. Commun., 110, 670-678(1994).

    [7] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, S. J. O. Franke-Arnold. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448-5456(2004).

    [8] J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. J. Tur. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [9] S. W. Hell, J. J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [10] J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, M. J. Padgett. Quantum correlations in optical angle–orbital angular momentum variables. Science, 329, 662-665(2010).

    [11] M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. J. Dholakia. Creation and manipulation of three-dimensional optically trapped structures. Science, 296, 1101-1103(2002).

    [12] V. Y. Bazhenov, M. Vasnetsov, M. J. Soskin. Laser beams with screw dislocations in their wavefronts. JETP Lett., 52, 429-431(1990).

    [13] M. Beijersbergen, R. Coerwinkel, M. Kristensen, J. J. Woerdman. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun., 112, 321-327(1994).

    [14] T. Wu, X. Zhang, Q. Xu, E. Plum, K. Chen, Y. Xu, Y. Lu, H. Zhang, Z. Zhang, X. J. Chen. Dielectric metasurfaces for complete control of phase, amplitude, and polarization. Adv. Opt. Mater., 10, 2101223(2022).

    [15] A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, A. J. Majumdar. Low-contrast dielectric metasurface optics. ACS Photon., 3, 209-214(2016).

    [16] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. J. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [17] A. H. Dorrah, N. A. Rubin, A. Zaidi, M. Tamagnone, F. Capasso. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics, 15, 287-296(2021).

    [18] Q. Xu, X. Su, X. Zhang, L. Dong, L. Liu, Y. Shi, Q. Wang, M. Kang, A. Alù, S. J. Zhang. Mechanically reprogrammable Pancharatnam–Berry metasurface for microwaves. Adv. Photon., 4, 016002(2022).

    [19] D. Lin, P. Fan, E. Hasman, M. L. Brongersma. Dielectric gradient metasurface optical elements. Science, 345, 298-302(2014).

    [20] S. Jahani, Z. J. N. Jacob. All-dielectric metamaterials. Nat. Nanotechnol., 11, 23-36(2016).

    [21] M. Liu, W. Zhu, P. Huo, L. Feng, M. Song, C. Zhang, L. Chen, H. J. Lezec, Y. Lu, A. Agrawal, T. Xu. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci. Appl., 10, 107(2021).

    [22] G. Biener, A. Niv, V. Kleiner, E. J. Hasman. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Opt. Lett., 27, 1875-1877(2002).

    [23] L. Marrucci, C. Manzo, D. J. P. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [24] S. Li, X. Li, L. Zhang, G. Wang, L. Zhang, M. Liu, C. Zeng, L. Wang, Q. Sun, W. J. Zhao. Efficient optical angular momentum manipulation for compact multiplexing and demultiplexing using a dielectric metasurface. Adv. Opt. Mater., 8, 1901666(2020).

    [25] Y. Xu, H. Zhang, Q. Li, X. Zhang, Q. Xu, W. Zhang, C. Hu, X. Zhang, J. Han, W. J. N. Zhang. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics, 9, 3393-3402(2020).

    [26] R. C. Devlin, A. Ambrosio, N. A. Rubin, J. B. Mueller, F. Capasso. Arbitrary spin-to–orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    [27] J. Yu, C. Zhou, Y. Lu, J. Wu, L. Zhu, W. J. Jia. Square lattices of quasi-perfect optical vortices generated by two-dimensional encoding continuous-phase gratings. Opt. Lett., 40, 2513-2516(2015).

    [28] D. Deng, Y. Li, Y. Han, X. Su, J. Ye, J. Gao, Q. Sun, S. J. Qu. Perfect vortex in three-dimensional multifocal array. Opt. Express, 24, 28270-28278(2016).

    [29] P. Vaity, L. J. Rusch. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett., 40, 597-600(2015).

    [30] Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, D. J. Fan. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements. Sci. Rep., 7, 44096(2017).

    [31] J. García-García, C. Rickenstorff-Parrao, R. Ramos-García, V. Arrizón, A. S. Ostrovsky. Simple technique for generating the perfect optical vortex. Opt. Lett., 39, 5305-5308(2014).

    [32] A. S. Ostrovsky, C. Rickenstorff-Parrao, V. Arrizón. Generation of the ‘perfect’ optical vortex using a liquid-crystal spatial light modulator. Opt. Lett., 38, 534-536(2013).

    [33] W. Liu, Q. Yang, Q. Xu, X. Jiang, T. Wu, J. Gu, J. Han, W. J. N. Zhang. Multichannel terahertz quasi-perfect vortex beams generation enabled by multifunctional metasurfaces. Nanophotonics, 11, 3631-3640(2022).

    [34] J. He, M. Wan, X. Zhang, S. Yuan, L. Zhang, J. J. Wang. Generating ultraviolet perfect vortex beams using a high-efficiency broadband dielectric metasurface. Opt. Express, 30, 4806-4816(2022).

    [35] M. Liu, P. Huo, W. Zhu, C. Zhang, S. Zhang, M. Song, S. Zhang, Q. Zhou, L. Chen, H. J. Lezec, A. Agrawal, Y. Lu, T. Xu. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat. Commun., 12, 2230(2021).

    [36] Y. Zhang, W. Liu, J. Gao, X. Yang. Generating focused 3D perfect vortex beams by plasmonic metasurfaces. Adv. Opt. Mater, 6, 1701228(2018).

    [37] Y. Bao, J. Ni, C. W. Qiu. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv. Mater., 32, 1905659(2020).

    [38] F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett., 12, 4932-4936(2012).

    [39] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [40] S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Öhberg, A. S. Arnold. Optical Ferris wheel for ultracold atoms. Opt. Express, 15, 8619-8625(2007).

    [41] L. Nie, L. Kong, T. Gao, N. Dong, K. Jiang. Characterizing the temporal rotation and radial twist of the interference pattern of vortex beams. Opt. Commun., 518, 128339(2022).

    [42] S. Fu, T. Wang, C. Gao. Perfect optical vortex array with controllable diffraction order and topological charge. J. Opt. Soc. Am. A, 33, 1836-1842(2016).

    [43] A. H. Dorrah, M. Zamboni-Rached, M. Mojahedi. Experimental demonstration of tunable refractometer based on orbital angular momentum of longitudinally structured light. Light Sci. Appl., 7, 40(2018).

    [44] G. Liang, B. Yuan, Y. Li, X. Kong, W. Cheng, H. Qiao, X. Hu. Evolutions of optical vortices under wide Gaussian background. Results Phys., 26, 104352(2021).

    Fan Huang, Quan Xu, Wanying Liu, Tong Wu, Jianqiang Gu, Jiaguang Han, Weili Zhang. Generating superposed terahertz perfect vortices via a spin-multiplexed all-dielectric metasurface[J]. Photonics Research, 2023, 11(3): 431
    Download Citation