• Journal of Infrared and Millimeter Waves
  • Vol. 34, Issue 4, 479 (2015)
ZHU Rong-Zhen1、*, WANG Rui1, JIANG Tian1, XU Zhong-Jie1, and CHENG Xiang-Ai1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2015.04.017 Cite this Article
    ZHU Rong-Zhen, WANG Rui, JIANG Tian, XU Zhong-Jie, CHENG Xiang-Ai. Research of laser irradiation effect on monocrystalline silicon solar cells and single junction GaAs solar cells[J]. Journal of Infrared and Millimeter Waves, 2015, 34(4): 479 Copy Citation Text show less

    Abstract

    Monocrystalline silicon and single junction GaAs/Ge solar cells irradiated by 16 ns pulse-duration with the laser at 1064 nm wavelength for different fluences (energy densities) were studied. It was found that solar cell is easily damaged when laser spot was focused on the metal gridlines, meanwhile, monocrystalline silicon solar cell was almost undamaged when laser spot was focused on the surface, GaAs/Ge solar cells’ performance didn’t decrease greatly. Theoretically, the damage of nanosecond pulse mainly commons heat and dynamics effects. The high temperature melts and gasifies materials and the dynamical effect is along the laser’s transmitting direction vertical to the surface of materials. Investigation also indicates that monocrystalline Si cells and the thick germanium base intrinsically absorb 1064 nm strongly, while the GaAs/Ge is transparent to 1064 nm, The melting point of germanium material is lower than that of silicon, so its damage threshold is lower. These experimental conclusions were proved and verified by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).
    ZHU Rong-Zhen, WANG Rui, JIANG Tian, XU Zhong-Jie, CHENG Xiang-Ai. Research of laser irradiation effect on monocrystalline silicon solar cells and single junction GaAs solar cells[J]. Journal of Infrared and Millimeter Waves, 2015, 34(4): 479
    Download Citation