• Advanced Photonics
  • Vol. 6, Issue 5, 050503 (2024)
Xuefeng Jiang1,2,*
Author Affiliations
  • 1Seton Hall University, Department of Physics, South Orange, New Jersey, United States
  • 2Binghamton University, Department of Physics, Applied Physics and Astronomy, Binghamton, New York, United States
  • show less
    DOI: 10.1117/1.AP.6.5.050503 Cite this Article Set citation alerts
    Xuefeng Jiang, "Singular dielectric nanolaser: breaking diffraction limits to atomic scale," Adv. Photon. 6, 050503 (2024) Copy Citation Text show less
    References

    [1] A. Di Piazza et al. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys., 84, 1177-1228(2012).

    [2] J. Hecht. Short history of laser development. Opt. Eng., 49, 091002(2010).

    [3] X.-F. Jiang et al. Whispering-gallery microcavities with unidirectional laser emission. Laser Photonics Rev., 10, 40-61(2016).

    [4] X.-F. Jiang et al. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv. Mater., 24, OP260-OP264(2012).

    [5] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).

    [6] H. Shim, F. Monticone, O. D. Miller. Fundamental limits to the refractive index of transparent optical materials. Adv. Mater., 33, 2103946(2021).

    [7] J. B. Khurgin. Expanding the photonic palette: exploring high index materials. ACS Photonics, 9, 743-751(2022).

    [8] J. A. Schuller et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater., 9, 193-204(2010).

    [9] D. K. Gramotnev, S. I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photonics, 4, 83-91(2010).

    [10] R. F. Oulton et al. Plasmon lasers at deep subwavelength scale. Nature, 461, 629-632(2009).

    [11] M. A. Noginov et al. Demonstration of a spaser-based nanolaser. Nature, 460, 1110-1112(2009).

    [12] J. B. Khurgin. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol., 10, 2-6(2015).

    [13] S. Hu, S. M. Weiss. Design of photonic crystal cavities for extreme light concentration. ACS Photonics, 3, 1647-1653(2016).

    [14] H. Choi, M. Heuck, D. Englund. Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities. Phys. Rev. Lett., 118, 223605(2017).

    [15] M. Albrechtsen. Nanometer-scale photon confinement in topology-optimized dielectric cavities. Nat. Commun., 13, 6281(2022).

    [16] A. N. Babar et al. Self-assembled photonic cavities with atomic-scale confinement. Nature, 624, 57-63(2023).

    [17] Y.-H. Ouyang et al. Singular dielectric nanolaser with atomic-scale field localization. Nature, 632, 287-293(2024).