• Optical Instruments
  • Vol. 44, Issue 3, 23 (2022)
Junjie ZHOU and Ling ZHANG*
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.2022.03.004 Cite this Article
    Junjie ZHOU, Ling ZHANG. Nanoporous gold island fabrication and SERS property investigation[J]. Optical Instruments, 2022, 44(3): 23 Copy Citation Text show less
    References

    [1] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J, et al. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 26, 163-166(1974).

    [2] SANIEL M B B, LIM L H V, LAMORENA R B. An initial study on the feasibility of using rudimentary SERS in quick chemical assessment of ambient aerosols[J]. ChemistrySelect, 4, 14082-14090(2019).

    [3] GANESH S, VENKATAKRISHNAN K, TAN B. Detecting the origin of cancer-mobile quantum probe for single cancer stem cell detection[J]. Advanced Functional Materials, 30, 1907572(2020).

    [4] LU S C, YOU T T, YANG N, et al. Flexible SERS substrate based on Ag nanodendrite-coated carbon fiber cloth: simultaneous detection for multiple pesticides in liquid droplet[J]. Analytical and Bioanalytical Chemistry, 412, 1159-1167(2020).

    [5] LE RU E C, BLACKIE E, MEYER M, et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. Journal of Physical Chemistry C, 111, 13794-13803(2007).

    [6] DING L, LI Y, CHU H B, et al. Creation of cadmium sulfide nanostructures using AFM dip-pen nanolithography[J]. Journal of Physical Chemistry B, 109, 22337-22340(2005).

    [7] WEN S P, MIAO X R, FAN G C, et al. Aptamer-conjugated Au Nanocage/SiO2 core-shell bifunctional nanoprobes with high stability and biocompatibility for cellular SERS Imaging and near-Infrared photothermal therapy[J]. ACS Sensors, 4, 301-308(2019).

    [8] WANG Q, ZHANG C L, GONG T C, et al. Large-scale diamond silver nanoparticle arrays as uniform and sensitive SERS substrates fabricated by surface Plasmon lithography technology[J]. Optics Communications, 444, 56-62(2019).

    [9] LIU L H, CUI S H, FU T Z, et al. Effect of concentration on the position of fluorescence peak based on black-silicon SERS substrate[J]. Applied Surface Science, 464, 337-343(2019).

    [10] ZEMAN E J, SCHATZ G C. An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium[J]. The Journal of Physical Chemistry, 91, 634-643(1987).

    [11] SONG R R, ZHANG L, ZHU F, et al. Hierarchical nanoporous copper fabricated by one-step dealloying toward ultrasensitive surface-enhanced Raman sensing[J]. Advanced Materials Interfaces, 5, 1800332(2018).

    [12] ZHANG L, CHEN L Y, LIU H W, et al. Effect of residual silver on surface-enhanced Raman scattering of dealloyed nanoporous gold[J]. The Journal of Physical Chemistry C, 115, 19583-19587(2011).

    [13] LEE P C, MEISEL D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols[J]. The Journal of Physical Chemistry, 86, 3391-3395(1982).

    [14] DING Y, CHEN M W. Nanoporous metals for catalytic and optical applications[J]. MRS Bulletin, 34, 569-576(2009).

    [15] ZHAO F S, ZENG J B, ARNOB M M P, et al. Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots[J]. Nanoscale, 6, 8199-8207(2014).

    [16] XUE Y P, SCAGLIONE F, RIZZI P, et al. Improving the chemical de-alloying of amorphous Au alloys[J]. Corrosion Science, 127, 141-146(2017).

    [17] LANG X Y, CHEN L Y, GUAN P F, et al. Geometric effect on surface enhanced Raman scattering of nanoporous gold: improving Raman scattering by tailoring ligament and nanopore ratios[J]. Applied Physics Letters, 94, 213109(2009).

    [18] HUANG J L, HE Z B, HE X S, et al. Island-like nanoporous gold: smaller island generates stronger surface-enhanced Raman scattering[J]. ACS Applied Materials & Interfaces, 9, 28902-28910(2017).

    [19] RAVEH A, MARTINU L, HAWTHORNE H M, et al. Mechanical and tribological properties of dual-frequency plasma-deposited diamond-like carbon[J]. Surface and Coatings Technology, 58, 45-55(1993).

    [20] VOEVODIN A A, REBHOLZ C, SCHNEIDER J M, et al. Wear resistant composite coatings deposited by electron enhanced closed field unbalanced magnetron sputtering[J]. Surface and Coatings Technology, 73, 185-197(1995).

    [21] WEISSMÜLLER J, SIERADZKI K. Dealloyed nanoporous materials with interface-controlled behavior[J]. MRS Bulletin, 43, 14-19(2018).

    [22] MESSIER R, VENUGOPAL V C, SUNAL P D. Origin and evolution of sculptured thin films[J]. Journal of Vacuum Science & Technology A, 18, 1538-1545(2000).

    [23] CHAUVIN A, HORAK L, DUVERGER-NÉDELLEC E, et al. Effect of the substrate temperature during gold-copper alloys thin film deposition by magnetron co-sputtering on the dealloying process[J]. Surface & Coatings Technology, 383, 125220(2020).

    [24] CHAUVIN A, STEPHANT N, DU K, et al. Large-scale fabrication of porous gold nanowires via laser interference lithography and dealloying of gold-silver nano-alloys[J]. Micromachines, 8, 168(2017).

    [25] XING L Y, LU N, LI X J, et al. Primary and secondary dealloying of Au(Pt)-Ag: structural and compositional evolutions, and volume shrinkage[J]. Journal of the Electrochemical Society, 161, C517-C526(2014).

    [26] ERLEBACHER J, SESHADRI R. Hard materials with tunable porosity[J]. MRS Bulletin, 34, 561-568(2009).

    [27] ZHANG M, ZHANG L, CHEN B, et al. Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering[J]. Nanotechnology, 28, 055301(2017).

    [28] ERLEBACHER J, AZIZ M J, KARMA A, et al. Evolution of nanoporosity in dealloying[J]. Nature, 410, 450-453(2001).

    [29] FUJITA T, QIAN L H, INOKE K, et al. Three-dimensional morphology of nanoporous gold[J]. Applied Physics Letters, 92, 251902(2008).