• Chinese Journal of Lasers
  • Vol. 48, Issue 19, 1901001 (2021)
Minglie Hu*, Jue Wang, and Jintao Fan
Author Affiliations
  • Ultrafast Laser Laboratory & Key Laboratory of Optoelectronic Information Technology (Ministry of Education), School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/CJL202148.1901001 Cite this Article Set citation alerts
    Minglie Hu, Jue Wang, Jintao Fan. Research Progress on Fiber Laser-Pumped Femtosecond Optical Parametric Oscillators[J]. Chinese Journal of Lasers, 2021, 48(19): 1901001 Copy Citation Text show less
    References

    [1] Boyd R W. Nonlinear optics[M]. 3rd ed(2003).

    [2] Franken P A, Hill A E, Peters C W et al. Generation of optical harmonics[J]. Physical Review Letters, 7, 118-119(1961).

    [3] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).

    [4] Sotier F, Thomay T, Hanke T et al. Femtosecond few-fermion dynamics and deterministic single-photon gain in a quantum dot[J]. Nature Physics, 5, 352-356(2009).

    [5] Tian W L, Zhu J F, Wang Z H et al. Optical parametric oscillators synchronously pumped by all-solid-state femtosecond lasers[J]. Chinese Journal of Lasers, 46, 0508015(2019).

    [6] Reimer C, Kues M, Caspani L et al. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip[J]. Nature Communications, 6, 8236(2015).

    [7] Timmers H, Kowligy A, Lind A et al. Molecular fingerprinting with bright, broadband infrared frequency combs[J]. Optica, 5, 727-732(2018).

    [8] Edelstein D C, Wachman E S, Tang C L. Broadly tunable high repetition rate femtosecond optical parametric oscillator[J]. Applied Physics Letters, 54, 1728-1730(1989).

    [9] Limpert J, Roser F, Schreiber T et al. High-power ultrafast fiber laser systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 12, 233-244(2006).

    [10] Wang Q Y, Hu M L, Chai L. Progress in nonlinear optics with photonic crystal fibers[J]. Chinese Journal of Lasers, 33, 57-66(2006).

    [11] Yan D Y, Liu B W, Song H Y et al. Research status and development trend of high power femtosecond fiber laser amplifiers[J]. Chinese Journal of Lasers, 46, 0508012(2019).

    [12] Ebrahim-Zadeh M, Kumar S C. Yb-fiber-laser-pumped ultrafast frequency conversion sources from the mid-infrared to the ultraviolet[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 624-642(2014).

    [13] Kumar S C, Schunemann P G, Zawilski K T et al. Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2[J]. Journal of the Optical Society of America B, 33, D44-D56(2016).

    [14] Krischek R, Wieczorek W, Ozawa A et al. Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments[J]. Nature Photonics, 4, 170-173(2010).

    [15] Glezer E N, Milosavljevic M, Huang L et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 21, 2023-2025(1996).

    [16] Jayasinghe A K, Rohner J, Hutson M S. Holographic UV laser microsurgery[J]. Biomedical Optics Express, 2, 2590-2599(2011).

    [17] Gu C L, Hu M L, Fan J T et al. High power tunable femtosecond ultraviolet laser source based on an Yb-fiber-laser pumped optical parametric oscillator[J]. Optics Express, 23, 6181-6186(2015).

    [18] Fan J T, Gu C L, Wang C et al. Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator[J]. Optics Express, 24, 13250-13257(2016).

    [19] Samanta G K, Kumar S C, Aadhi A et al. Yb-fiber-laser-pumped, high-repetition-rate picosecond optical parametric oscillator tunable in the ultraviolet[J]. Optics Express, 22, 11476-11487(2014).

    [20] Zou J, Dong C, Wang H et al. Towards visible-wavelength passively mode-locked lasers in all-fibre format[J]. Light, Science & Applications, 9, 61(2020).

    [21] Liu X M, Laegsgaard J, Iegorov R et al. Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation[J]. Photonics Research, 5, 750-761(2017).

    [22] Stanley R. Plasmonics in the mid-infrared[J]. Nature Photonics, 6, 409-411(2012).

    [23] Fang Y R, Ge Y Q, Wang C et al. Mid-infrared photonics using 2D materials: status and challenges[J]. Laser & Photonics Reviews, 14, 1900098(2020).

    [24] Petrich W. Mid-infrared and Raman spectroscopy for medical diagnostics[J]. Applied Spectroscopy Reviews, 36, 181-237(2001).

    [25] Bureau B, Boussard C, Cui S et al. Chalcogenide optical fibers for mid-infrared sensing[J]. Optical Engineering, 53, 027101(2014).

    [26] Sheehy B, Martin J D D, DiMauro L F et al. High harmonic generation at long wavelengths[J]. Physical Review Letters, 83, 5270(1999).

    [27] Kumar S C, Krauth J, Steinmann A et al. High-power femtosecond mid-infrared optical parametric oscillator at 7 μm based on CdSiP2[J]. Optics Letters, 40, 1398-1401(2015).

    [28] Boyko A A, Marchev G M, Petrov V et al. Intracavity-pumped, cascaded AgGaSe2 optical parametric oscillator tunable from 5.8 to 18 μm[J]. Optics Express, 23, 33460-33465(2015).

    [29] Ru Q T, Lee N, Chen X et al. Optical parametric oscillation in a random polycrystalline medium[J]. Optica, 4, 617-618(2017).

    [30] Mörz F, Steinle T, Linnenbank H et al. Alignment-free difference frequency light source tunable from 5 to 20 μm by mixing two independently tunable OPOs[J]. Optics Express, 28, 11883-11891(2020).

    [31] Fan J T, Gu C L, Zhao J et al. Dielectric-mirror-less femtosecond optical parametric oscillator with ultrabroad-band tunability[J]. Optics Letters, 43, 2316-2319(2018).

    [32] Lang T, Binhammer T, Rausch S et al. High power ultra-widely tuneable femtosecond pulses from a non-collinear optical parametric oscillator (NOPO)[J]. Optics Express, 20, 912-917(2012).

    [33] Coluccelli N, Viola D, Kumar V et al. Tunable 30 fs light pulses at 1 W power level from a Yb-pumped optical parametric oscillator[J]. Optics Letters, 42, 4545-4548(2017).

    [34] Fan J T, Gu C L, Liao R Y et al. High power 4.2-cycle mid-infrared pulses from a self-compression optical parametric oscillator[J]. IEEE Photonics Journal, 10, 1-7(2018).

    [35] Tian W L, Wang Z H, Meng X H et al. High-power, widely tunable, green-pumped femtosecond BiB3O6 optical parametric oscillator[J]. Optics Letters, 41, 4851-4854(2016).

    [36] Meng X, Wang Z, Tian W et al. Watt-level widely tunable femtosecond mid-infrared KTiOAsO4 optical parametric oscillator pumped by a 1.03 μm Yb: KGW laser[J]. Optics Letters, 43, 943-946(2018).

    [37] Petersen T, Zuegel J D, Bromage J. High-energy infrared femtosecond optical parametric oscillator synchronously pumped by a thin-disk laser[C]. //Advanced Solid State Lasers 2016, October 30-November 3, 2016, Boston, Massachusetts, United States, ATu1A.6(2016).

    [38] He L J, Liu K, Bo Y et al. 30.5-μJ, 10-kHz, picosecond optical parametric oscillator pumped synchronously and intracavity by a regenerative amplifier[J]. Optics Letters, 43, 539-542(2018).

    [39] Wegener M. Extreme nonlinear optics: an introduction[M](2005).

    [40] Jha P K, Eleuch H, Rostovtsev Y V. Coherent control of atomic excitation using off-resonant strong few-cycle pulses[J]. Physical Review A, 82, 045805(2010).

    [41] Mücke O D, Tritschler T, Wegener M et al. Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics[J]. Physical Review Letters, 89, 127401(2002).

    [42] Lin Y Y, Chen I H, Lee R K. Few-cycle self-induced-transparency solitons[J]. Physical Review A, 83, 043828(2011).

    [43] Leblond H, Mihalache D. Models of few optical cycle solitons beyond the slowly varying envelope approximation[J]. Physics Reports, 523, 61-126(2013).

    [44] Wang Q, Ge S, Li X et al. Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump-probe spectroscopy[J]. ACS Nano, 7, 11087-11093(2013).

    [45] Apolonski A, Poppe A, Tempea G et al. Controlling the phase evolution of few-cycle light pulses[J]. Physical Review Letters, 85, 740-743(2000).

    [46] Niikura H, Légaré F, Hasbani R et al. Sub-laser-cycle electron pulses for probing molecular dynamics[J]. Nature, 417, 917-922(2002).

    [47] Kumar S C, Esteban-Martin A, Ideguchi T et al. Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti: sapphire laser[J]. Laser & Photonics Reviews, 8, L86-L91(2014).

    [48] McCracken R A, Reid D T. Few-cycle near-infrared pulses from a degenerate 1 GHz optical parametric oscillator[J]. Optics Letters, 40, 4102-4105(2015).

    [49] Liu P, Heng J X, Zhang Z W. Chirped-pulse optical parametric oscillators and the generation of broadband midinfrared laser sources[J]. Infrared and Laser Engineering, 49, 20201051(2020).

    [50] Liu P, Zhang Z W. Chirped-pulse optical parametric oscillators[J]. Optics Letters, 43, 4735-4738(2018).

    [51] Liu P, Heng J, Zhang Z. Chirped-pulse generation from optical parametric oscillators with an aperiodic quasi-phase-matching crystal[J]. Optics Letters, 45, 2568-2571(2020).

    [52] Khaydarov J D V, Andrews J H, Singer K D. Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch[J]. Optics Letters, 19, 831-833(1994).

    [53] Weingarten K J, Rodwel M J W, Bloom D M. Picosecond optical sampling of GaAs integrated circuits[J]. IEEE Journal of Quantum Electronics, 24, 198-220(1988).

    [54] Steinmetz T, Wilken T, Araujo-Hauck C et al. Laser frequency combs for astronomical observations[J]. Science, 321, 1335-1337(2008).

    [55] Drescher M, Hentschel M, Kienberger R et al. Time-resolved atomic inner-shell spectroscopy[J]. Nature, 419, 803-807(2002).

    [56] Bartels A, Dekorsy T, Kurz H. Femtosecond Ti: sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy[J]. Optics Letters, 24, 996-998(1999).

    [57] Jiang J, Hasama T. Harmonic repetition-rate femtosecond optical parametric oscillator[J]. Applied Physics B, 74, 313-317(2002).

    [58] Meng X H, Wang Z H, Tian W L et al. 515 nm pumped femtosecond optical parametric oscillator at 755 MHz based on BiB3O6[J]. Applied Physics B, 125, 1-6(2019).

    [59] Song J J, Meng X H, Wang Z H et al. Harmonically pump a femtosecond optical parametric oscillator to 1.13 GHz by a femtosecond 515 nm laser[J]. Chinese Optics Letters, 18, 033201(2020).

    [60] Jin Y, Cristescu S M, Harren F J M et al. Tunable high repetition rates femtosecond pulses from an optical parametric oscillator[C]. //Mid-Infrared Coherent Sources 2016, 20-22 March 2016, Long Beach, California, United States, MS3C.7(2016).

    [61] Esteban-Martin A, Kokabee O, Moutzouris K et al. High-harmonic-repetition-rate, 1 GHz femtosecond optical parametric oscillator pumped by a 76 MHz Ti: sapphire laser[J]. Optics Letters, 34, 428-430(2009).

    [62] Kimmelma O, Kumar S C, Esteban-Martin A et al. Multi-gigahertz picosecond optical parametric oscillator pumped by 80-MHz Yb-fiber laser[J]. Optics Letters, 38, 4550-4553(2013).

    [63] Kokabee O, Esteban-Martin A, Ebrahim-Zadeh M. Efficient, high-power, 16-GHz, picosecond optical parametric oscillator pumped by an 81-MHz fiber laser[C]. //Conference on Lasers and Electro-Optics 2010, May 16-21, 2010, San Jose, California, United States, CThP2(2010).

    [64] Tian W L, Wang Z H, Zhu J F et al. Harmonically pumped femtosecond optical parametric oscillator with multi-gigahertz repetition rate[J]. Optics Express, 24, 29814-29821(2016).

    [65] Fan J T, Chu Y X, Shi H S et al. Compact V-type cavity for harmonically pumped 1-GHz femtosecond optical parametric oscillator[J]. IEEE Photonics Technology Letters, 30, 2159-2162(2018).

    [66] Chen Y X, Fan J T, Yang W K et al. 910-MHz, watt-level, signal-power-enhanced, compact femtosecond optical parametric oscillator based on bidirectional pumping technique[J]. Optics Letters, 44, 1638-1641(2019).

    [67] Cardano F, Karimi E, Slussarenko S et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges[J]. Applied Optics, 51, C1-C6(2012).

    [68] Wang X L, Ding J P, Ni W J et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters, 32, 3549-3551(2007).

    [69] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 96, 163905(2006).

    [70] Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications[J]. Journal of Optics, 20, 123001(2018).

    [71] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 90(2019).

    [72] Naidoo D, Roux F S, Dudley A et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 10, 327-332(2016).

    [73] Huang K, Zeng J, Gan J W et al. Controlled generation of ultrafast vector vortex beams from a mode-locked fiber laser[J]. Optics Letters, 43, 3933-3936(2018).

    [74] Aadhi A, Samanta G K, Kumar S C et al. Controlled switching of orbital angular momentum in an optical parametric oscillator[J]. Optica, 4, 349-355(2017).

    [75] Aadhi A, Sharma V, Singh R P et al. Continuous-wave, singly resonant parametric oscillator-based mid-infrared optical vortex source[J]. Optics Letters, 42, 3674-3677(2017).

    [76] Sharma V, Kumar S C, Samanta G K et al. Orbital angular momentum exchange in a picosecond optical parametric oscillator[J]. Optics Letters, 43, 3606-3609(2018).

    [77] Aadhi A, Sharma V, Samanta G K. High-power, continuous-wave, tunable mid-IR, higher-order vortex beam optical parametric oscillator[J]. Optics Letters, 43, 2312-2315(2018).

    [78] Zhao J, Fan J T, Liao R Y et al. High-power femtosecond cylindrical vector beam optical parametric oscillator[J]. Optics Express, 27, 33080-33089(2019).

    [79] Fan J T, Xiao N, Zhao J et al. Controlled generation of wavelength-tunable higher order poincaré sphere beams from a femtosecond optical parametric oscillator[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-5(2020).

    [80] Fan J T, Zhao J, Shi L P et al. Two-channel, dual-beam-mode, wavelength-tunable femtosecond optical parametric oscillator[J]. Advanced Photonics, 2, 045001(2020).

    [81] Gu C, Hu M, Fan J et al. High-power, dual-wavelength femtosecond LiB3O5 optical parametric oscillator pumped by fiber laser[J]. Optics Letters, 39, 3896-3899(2014).

    [82] Zhao J, Fan J T, Tian H C et al. Dual-mode and two-signal-wavelength femtosecond optical parametric oscillator based on LiB3O5[J]. Optics Letters, 45, 3985-3988(2020).

    [83] Sun Q, Zu S, Ueno K et al. Applications of ultrafast photoemission electron microscopy in nanophotonics[J]. Chinese Journal of Lasers, 46, 0508001(2019).

    [84] Zhang X Q. Research on second-order nonlinear optical properties of semiconductor nanowires based on femtosecond lasers[D](2014).

    [85] Bautista G, Mäkitalo J, Chen Y et al. Second-harmonic generation imaging of semiconductor nanowires with focused vector beams[J]. Nano Letters, 15, 1564-1569(2015).

    [86] Han S, Kim H, Kim Y W et al. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure[J]. Nature Communications, 7, 13105(2016).

    [87] Janisch C, Wang Y, Ma D et al. Extraordinary second harmonic generation in tungsten disulfide monolayers[J]. Scientific Reports, 4, 5530(2014).

    [88] Zhang X Q, He H, Fan J T et al. Sum frequency generation in pure zinc-blende GaAs nanowires[J]. Optics Express, 21, 28432-28437(2013).

    [89] Zhao J, Fan J T, Liu W et al. Ultra-broadband second-harmonic generation in ZnO nano-tetrapod with over-one-octave bandwidth[J]. IEEE Photonics Technology Letters, 31, 250-252(2019).

    [90] Camp Jr C H, Cicerone M T. Chemically sensitive bioimaging with coherent Raman scattering[J]. Nature Photonics, 9, 295-305(2015).

    [91] Linnenbank H, Steinle T, Mörz F et al. Robust and rapidly tunable light source for SRS/CARS microscopy with low-intensity noise[J]. Advanced Photonics, 1, 055001(2019).

    [92] Hoffmann C, Lang T, Morgner U. Stimulated Raman scattering with a rapidly tunable non-collinear optical parametric oscillator[C]. //2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, May 12-16, 2013, Munich, Germany.(2013).

    [93] Linnenbank H, Steinle T, Mörz F et al. Robust and rapidly tunable light source for SRS/CARS microscopy with low-intensity noise[J]. Advanced Photonics, 1, 055001(2019).

    [94] Kuramochi E. Photonic-crystal optical parametric oscillator[J]. Nature Photonics, 15, 2-4(2021).

    [95] Khurgin J B. Mirrorless magic[J]. Nature Photonics, 1, 446-447(2007).

    [96] O’Donnell C F, Kumar S C, Paoletta T et al. Widely tunable femtosecond soliton generation in a fiber-feedback optical parametric oscillator[J]. Optica, 7, 426-433(2020).

    [97] Nie M M, Huang S W. Quadratic soliton mode-locked degenerate optical parametric oscillator[J]. Optics Letters, 45, 2311-2314(2020).

    Minglie Hu, Jue Wang, Jintao Fan. Research Progress on Fiber Laser-Pumped Femtosecond Optical Parametric Oscillators[J]. Chinese Journal of Lasers, 2021, 48(19): 1901001
    Download Citation