• Photonics Research
  • Vol. 12, Issue 11, 2651 (2024)
Shuai Liu1,3,*, Bo-Han Wu2, Jeffrey Huang1, and Zheshen Zhang1,4,*
Author Affiliations
  • 1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
  • 2Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • 3e-mail: shualiu@umich.edu
  • 4e-mail: zszh@umich.edu
  • show less
    DOI: 10.1364/PRJ.533613 Cite this Article Set citation alerts
    Shuai Liu, Bo-Han Wu, Jeffrey Huang, Zheshen Zhang, "Formation of quasi-bound states in the continuum in a single deformed microcavity," Photonics Res. 12, 2651 (2024) Copy Citation Text show less
    References

    [1] J. von Neumann, E. P. Wigner. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys. Z, 30, 467-470(1929).

    [2] C. W. Hsu, B. Zhen, A. D. Stone. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [3] N. A. Cumpsty, D. S. Whitehead. The excitation of acoustic resonances by vortex shedding. J. Sound Vib., 18, 353-369(1971).

    [4] R. L. Schult, D. G. Ravenhall, H. W. Wyld. Quantum bound states in a classically unbound system of crossed wires. Phys. Rev. B, 39, 5476-5479(1989).

    [5] L. S. Cederbaum, R. S. Friedman, V. M. Ryaboy. Conical intersections and bound molecular states embedded in the continuum. Phys. Rev. Lett., 90, 013001(2003).

    [6] P. J. Cobelli, V. Pagneux, A. Maurel. Experimental observation of trapped modes in a water wave channel. Europhys. Lett., 88, 20006(2009).

    [7] D. C. Marinica, A. G. Borisov, S. V. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [8] A. Kodigala, T. Lepetit, Q. Gu. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).

    [9] C. Huang, C. Zhang, S. M. Xiao. Ultrafast control of vortex microlasers. Science, 367, 1018-1021(2020).

    [10] F. Couny, F. Benabid, P. J. Roberts. Generation and photonic guidance of multi-octave optical-frequency combs. Science, 318, 1118-1121(2007).

    [11] A. Cerjan, M. Jürgensen, W. A. Benalcazar. Observation of a higher-order topological bound state in the continuum. Phys. Rev. Lett., 125, 213901(2020).

    [12] B. Zhen, S.-L. Chua, J. Lee. Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals. Proc. Natl. Acad. Sci. USA, 110, 13711-13716(2013).

    [13] A. Tittl, A. Leitis, M. K. Liu. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 360, 1105-1109(2018).

    [14] K. Koshelev, G. Favraud, A. Bogdanov. Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics, 8, 725-745(2019).

    [15] J. Lee, B. Zhen, S.-L. Chua. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett., 109, 067401(2012).

    [16] Y. Chen, H. Deng, X. Sha. Observation of intrinsic chiral bound states in the continuum. Nature, 613, 474-478(2023).

    [17] H. M. Doeleman, F. Monticone, W. D. Hollander. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat. Photonics, 12, 397-401(2018).

    [18] M. Kang, T. Liu, C. T. Chan. Applications of bound states in the continuum in photonics. Nat. Rev. Phys., 5, 659-678(2023).

    [19] C.-L. Zou, J.-M. Cui, F.-W. Sun. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photon. Rev., 9, 114-119(2015).

    [20] Z. Yu, X. Xi, J. Ma. Photonic integrated circuits with bound states in the continuum. Optica, 6, 1342-1348(2019).

    [21] Z. Yu, X. Sun. Gigahertz acousto-optic modulation and frequency shifting on etchless lithium niobate integrated platform. ACS Photon., 8, 798-803(2021).

    [22] F. Ye, Y. Yu, X. Xi. Second-harmonic generation in etchless lithium niobate nanophotonic waveguides with bound states in the continuum. Laser Photon. Rev., 16, 2100429(2022).

    [23] Z. Yu, Y. Tong, H. K. Tsang. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat. Commun., 11, 2602(2020).

    [24] H. Friedrich, D. Wintgen. Interfering resonances and bound states in the continuum. Phys. Rev. A, 32, 3231-3242(1985).

    [25] A. F. Sadreev, E. N. Bulgakov, I. Rotter. Bound states in the continuum in open quantum billiards with a variable shape. Phys. Rev. B, 73, 235342(2006).

    [26] Y. H. Wang, Y. B. Fan, X. D. Zhang. Highly controllable etchless perovskite microlasers based on bound states in the continuum. ACS Nano, 15, 7386-7391(2021).

    [27] M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett., 119, 243901(2017).

    [28] E. Melik-Gaykazyan, K. Koshelev, J.-H. Choi. From Fano to quasi-BIC resonances in individual dielectric nanoantennas. Nano Lett., 21, 1765-1771(2021).

    [29] N. Solodovchenko, K. Samusev, D. Bochek. Bound states in the continuum in strong-coupling and weak-coupling regimes under the cylinder–ring transition. Nanophotonics, 10, 4347-4355(2021).

    [30] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [31] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 87, 61-111(2015).

    [32] S. Bittner, S. Guazzotti, Y. Zeng. Suppressing spatiotemporal lasing instabilities with wave-chaotic microcavities. Science, 361, 1225-1231(2018).

    [33] C.-H. Yi, J. Kullig, J. Wiersig. Pair of exceptional points in a microdisk cavity under an extremely weak deformation. Phys. Rev. Lett., 120, 093902(2018).

    [34] Y.-J. Qian, H. Liu, Q.-T. Cao. Regulated photon transport in chaotic microcavities by tailoring phase space. Phys. Rev. Lett., 127, 273902(2021).

    [35] S. Liu, Z. Y. Gu, N. Zhang. End-fire injection of guided light into optical microcavity. Appl. Phys. B, 120, 255-260(2015).

    [36] S. Liu, W. Z. Sun, Y. J. Wang. End-fire injection of light into high-Q silicon microdisks. Optica, 5, 612-616(2018).

    [37] S. Wang, S. Liu, Y. L. Liu. Direct observation of chaotic resonances in optical microcavities. Light Sci. Appl., 10, 135(2021).

    [38] J. U. Nöckel, A. D. Stone. Ray and wave chaos in asymmetric resonant optical cavities. Nature, 385, 45-47(1997).

    [39] C. Gmachl, F. Capasso, E. E. Narimanov. High-power directional emission from microlasers with chaotic resonators. Science, 280, 1556-1564(1998).

    [40] J. Wiersig, M. Hentschel. Combining directional light output and ultralow loss in deformed microdisks. Phys. Rev. Lett., 100, 033901(2008).

    [41] Q. H. Song, L. Ge, B. Redding. Channeling chaotic rays into waveguides for efficient collection of microcavity emission. Phys. Rev. Lett., 108, 243902(2012).

    [42] J. Wiersig. Formation of long-lived, scarlike modes near avoid resonance crossings in optical microcavities. Phys. Rev. Lett., 97, 253901(2006).

    [43] X. X. Xue, Y. Xuan, Y. Liu. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 9, 594-600(2015).

    [44] S. Ramelow, A. Farsi, S. Clemmen. Strong polarization mode coupling in microresonators. Opt. Lett., 39, 5134-5137(2014).

    [45] S. A. Miller, Y. Okawachi, S. Ramelow. Tunable frequency combs based on dual microring resonators. Opt. Express, 23, 21527-21540(2015).

    [46] Y. Liu, Y. Xuan, X. X. Xue. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica, 1, 137-144(2014).

    [47] Q. H. Song, H. Cao. Improving optical confinement in nanostructures via external mode coupling. Phys. Rev. Lett., 105, 053902(2010).

    [48] Q. H. Song, C. Zeng, S. M. Xiao. Coherent destruction of dynamical tunneling in asymmetric resonant cavities. Phys. Rev. A, 87, 013831(2013).

    [49] Q. J. Wang, C. L. Yan, L. Diehl. Deformed microcavity quantum cascade lasers with directional emission. New J. Phys., 11, 125018(2009).

    [50] Ó.B. Helgason, M. Girardi, Z. C. Ye. Surpassing the nonlinear conversion efficiency of soliton microcombs. Nat. Photonics, 17, 992-999(2023).

    [51] Y. Zhang, M. Menotti, K. Tan. Squeezed light from a nanophotonic molecule. Nat. Commun., 12, 2233(2021).

    Shuai Liu, Bo-Han Wu, Jeffrey Huang, Zheshen Zhang, "Formation of quasi-bound states in the continuum in a single deformed microcavity," Photonics Res. 12, 2651 (2024)
    Download Citation