[1] Hou H L, Qian S X and Takeuchi I 2022 Materials, physics and systems for multicaloric cooling Nat. Rev. Mater.7 633–52
[2] Cong D Y et al 2019 Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys Phys. Rev. Lett.122 255703
[3] Qian S X, Geng Y L, Wang Y, Ling J Z, Hwang Y, Radermacher R, Takeuchi I and Cui J 2016 A review of elastocaloric cooling: materials, cycles and system integrations Int. J. Refrig.64 1–19
[4] Pataky G J, Ertekin E and Sehitoglu H 2015 Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl Acta Mater.96 420–7
[5] Qian S X, Catalini D, Muehlbauer J, Liu B Y, Mevada H, Hou H L, Hwang Y, Radermacher R and Takeuchi I 2023 High-performance multimode elastocaloric cooling system Science380 722–7
[6] Hou H L et al 2019 Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing Science366 1116–21
[7] Bonnot E, Romero R, Ma˜nosa L, Vives E and Planes A 2008 Elastocaloric effect associated with the martensitic transition in shape-memory alloys Phys. Rev. Lett.100 125901
[8] Hou H L, Simsek E, Stasak D, Hasan N A, Qian S X, Ott R, Cui J and Takeuchi I 2017 Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat J. Phys. D: Appl. Phys.50 404001
[9] Yang Z, Cong D Y, Yuan Y, Li R G, Zheng H X, Sun X M, Nie Z H, Ren Y and Wang Y D 2020 Large room-temperature elastocaloric effect in a bulk polycrystalline Ni-Ti-Cu-Co alloy with low isothermal stress hysteresis Appl. Mater. Today21 100844
[10] Ciss C and Zaeem M A 2021 Design of NiTi-based shape memory microcomposites with enhanced elastocaloric performance by a fully thermomechanical coupled phase-field model Mater. Des.207 109898
[11] Cao Y X et al 2020 Large tunable elastocaloric effect in additively manufactured Ni–Ti shape memory alloys Acta Mater.194 178–89
[12] Ossmer H, Lambrecht F, Gltig M, Chluba C, Quandt E and Kohl M 2014 Evolution of temperature profiles in TiNi films for elastocaloric cooling Acta Mater.81 9–20
[13] Ding L, Zhou Y M, Xu Y Y, Dang P F, Ding X D, Sun J, Lookman T and Xue D Z 2021 Learning from superelasticity data to search for Ti-Ni alloys with large elastocaloric effect Acta Mater.218 117200
[14] Chen J Y, Liu B Q, Xing L L, Liu W, Lei L P and Fang G 2022 Toward tunable mechanical behavior and enhanced elastocaloric effect in NiTi alloy by gradient structure Acta Mater.226 117609
[15] Gu H L, Bumke L, Chluba C, Quandt E and James R D 2018 Phase engineering and supercompatibility of shape memory alloys Mater. Today21 265–77
[16] Chluba C, Ge W W, De Miranda R L, Strobel J, Kienle L, Quandt E and Wuttig M 2015 Ultralow-fatigue shape memory alloy films Science348 1004–7
[17] Bumke L, Zamponi C, Jetter J and Quandt E 2020 Cu-rich Ti52.8Ni22.2Cu22.5Co2.5 shape memory alloy films with ultra-low fatigue for elastocaloric applications J. Appl. Phys.127 225105
[18] Ossmer H, Chluba C, Gueltig M, Quandt E and Kohl M 2015 Local evolution of the elastocaloric effect in TiNi-based films Shape Mem. Superelasticity1 142–52
[19] Bechtold C, Chluba C, De Miranda R L and Quandt E 2012 High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films Appl. Phys. Lett.101 091903
[20] Ahadi A, Ghorabaei A S, Shirazi H and Nili-Ahmadabadi M 2021 Bulk NiTiCuCo shape memory alloys with ultra-high thermal and superelastic cyclic stability Scr. Mater.200 113899
[21] Dang P F et al 2022 Low-fatigue and large room-temperature elastocaloric effect in a bulk Ti49.2Ni40.8Cu10 alloy Acta Mater.229 117802
[22] Chen J Y, Lei L P and Fang G 2021 Elastocaloric cooling of shape memory alloys: a review Mater. Today Commun.28 102706
[23] Kirsch S M, Welsch F, Michaelis N, Schmidt M, Wieczorek A, Frenzel J, Eggeler G, Schtze A and Seelecke S 2018 NiTi-based elastocaloric cooling on the macroscale: from basic concepts to realization Energy Technol.6 1567–87
[24] Ishida A, Sato M and Ogawa K 2006 Microstructure and shape-memory behavior of annealed Ti51.5Ni33.1Cu15.4 thin films Phil. Mag. Lett.86 13–20
[25] Meng X L, Sato M and Ishida A 2008 Structure of martensite in Ti-rich Ti-Ni-Cu thin films annealed at different temperatures Acta Mater.56 3394–402
[26] Ishida A, Sato M and Gao Z Y 2014 Effects of Ti content on microstructure and shape memory behavior of TixNi(84.5−x)Cu15.5 (x = 44.6–55.4) thin films Acta Mater.69 292–300
[27] Lu H Z et al 2022 Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting J. Mater. Sci. Technol.101 205–16
[28] Wang J C, Zhu R, Liu Y J and Zhang L C 2023 Understanding melt pool characteristics in laser powder bed fusion: an overview of single- and multi-track melt pools for process optimization Adv. Powder Mater.2 100137
[29] Wei S S, Zhang J L, Zhang L, Zhang Y J, Song B, Wang X B, Fan J X, Liu Q and Shi Y S 2023 Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: a review Int. J. Extreme Manuf.5 032001
[30] Chen W, Gu D D, Yang J K, Yang Q, Chen J and Shen X F 2022 Compressive mechanical properties and shape memory effect of NiTi gradient lattice structures fabricated by laser powder bed fusion Int. J. Extreme Manuf.4 045002
[31] Zhang C, Zhu J K, Zheng H, Li H, Liu S and Cheng G J 2020 A review on microstructures and properties of high entropy alloys manufactured by selective laser melting Int. J. Extreme Manuf.2 032003
[32] Wei C, Zhang Z Z, Cheng D X, Sun Z, Zhu M H and Li L 2021 An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales Int. J. Extreme Manuf.3 012003
[33] Ren J et al 2022 Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing Nature608 62–68
[34] Ren J et al 2023 Deformation mechanisms in an additively manufactured dual-phase eutectic high-entropy alloy Acta Mater.257 119179
[35] Guo Y N, Su H J, Zhou H T, Shen Z L, Liu Y, Zhang J, Liu L and Fu H Z 2022 Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting J. Mater. Sci. Technol.111 298–306
[36] Zhu Y M et al 2022 Ultrastrong nanotwinned titanium alloys through additive manufacturing Nat. Mater.21 1258–62
[37] Guo W Q, Feng B, Yang Y, Ren Y, Liu Y N, Yang H, Yang Q, Cui L S, Tong X and Hao S J 2022 Effect of laser scanning speed on the microstructure, phase transformation and mechanical property of NiTi alloys fabricated by LPBF Mater. Des.215 110460
[38] Feng B, Wang C, Zhang Q Q, Ren Y, Cui L S, Yang Q and Hao S J 2022 Effect of laser hatch spacing on the pore defects, phase transformation and properties of selective laser melting fabricated NiTi shape memory alloys Mater. Sci. Eng. A 840 142965
[39] Ma H Y, Wang J C, Qin P, Liu Y J, Chen L Y, Wang L Q and Zhang L C 2024 Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition: microstructure, defects, and mechanical behavior J. Mater. Sci. Technol.183 32–62
[40] Wang X B et al 2020 Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting Addit. Manuf.36 101545
[41] Bakhtiari S, Li Y C, Sarkar S, Yang H, Cui L S and Liu Y N 2022 Deformation induced martensite stabilization of NiTi in constrained composite systems Mater. Sci. Eng. A 857 144128
[42] Liu Z Y, Cui L S, Liu Y N, Jiang D Q, Jiang J, Shi X B, Shao Y and Zheng Y J 2014 Influence of internal stress coupling on the deformation behavior of NiTi-Nb nanowire composites Scr. Mater.77 75–78
[43] Feng B et al 2020 In-situ synchrotron high energy x-ray diffraction study of micro-mechanical behaviour of R phase reorientation in nanocrystalline NiTi alloy Acta Mater.194 565–76
[44] Kong X G, Hao S J, Ren Y, Yang Y, Feng B, Guo F M, Yang Q, Huang B M and Cui L S 2022 Interactions between martensitic NiTi shape memory alloy and Nb nanowires in composite wire during tensile deformation Composites B 234 109690
[45] Li Y F, Tang S L, Gao Y M, Ma S Q, Zheng Q L and Cheng Y H 2017 Mechanical and thermodynamic properties of intermetallic compounds in the Ni-Ti system Int. J. Mod. Phys. B 31 1750161
[46] Zhang J S, Hao S J, Jiang D Q, Huan Y, Cui L S, Liu Y N, Yang H and Ren Y 2017 In situ synchrotron high-energy x-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix Acta Mater.130 297–309
[47] Hao S J, Cui L S, Ren Y, Han X D et al 2013 A transforming metal nanocomposite with large elastic strain, low modulus, and high strength Science339 1191–4
[48] Zhang J S, Liu Y N, Ren Y, Huan Y, Hao S J, Yu C, Shao Y, Ru Y D, Jiang D Q and Cui L S 2014 In situ synchrotron x-ray diffraction study of deformation behavior and load transfer in a Ti2Ni-NiTi composite Appl. Phys. Lett.105 041910
[49] Zhu Z G, Ng F L, Seet H L, Lu W J, Liebscher C H, Rao Z Y, Raabe D and Nai S M L 2022 Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation Mater. Today52 90–101
[50] Wang J C, Liu Y J, Liang S X, Zhang Y S, Wang L Q, Sercombe T B and Zhang L C 2022 Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder J. Mater. Sci. Technol.105 1–16
[51] Martin J H, Yahata B D, Hundley J M, Mayer J A, Schaedler T A and Pollock T M 2017 3D printing of high-strength aluminium alloys Nature549 365–9
[52] Sui S, Chew Y, Weng F, Tan C L, Du Z L and Bi G J 2022 Study of the intrinsic mechanisms of nickel additive for grain refinement and strength enhancement of laser aided additively manufactured Ti-6Al-4V Int. J. Extreme Manuf.4 035102
[53] Pan X Y and Qiu C L 2022 Promoting columnar-to-equiaxed transition in AlCoCrFeNi high entropy alloy during selective laser melting by adding Cr3C2Mater. Res. Lett.10 788–96
[54] Chokshi A H, Rosen A, Karch J and Gleiter H 1989 On the validity of the hall-petch relationship in nanocrystalline materials Scr. Metall.23 1679–83
[55] Furukawa M, Horita Z, Nemoto M, Valiev R Z and Langdon T G 1996 Microhardness measurements and the Hall-Petch relationship in an Al Mg alloy with submicrometer grain size Acta Mater.44 4619–29
[56] Nieh T G and Wadsworth J 1991 Hall-petch relation in nanocrystalline solids Scr. Metall. Mater.25 955–8
[57] Zhang J S, Hao S J, Jiang D Q, Huan Y, Cui L S, Liu Y N, Ren Y and Yang H 2018 Dual phase synergy enabled large elastic strains of nanoinclusions in a dislocation slip matrix composite Nano Lett.18 2976–83
[58] Pelton A R 2011 Nitinol fatigue: a review of microstructures and mechanisms J. Mater. Eng. Perform.20 613–7