• International Journal of Extreme Manufacturing
  • Vol. 6, Issue 4, 45501 (2024)
Feng Bo, Liu Helong, Yang Ying, Shen Hui..., Ren Yang, Liu Yinong, Cui Lishan, Huang Bingmin and Hao Shijie|Show fewer author(s)
DOI: 10.1088/2631-7990/ad35ff Cite this Article
Feng Bo, Liu Helong, Yang Ying, Shen Hui, Ren Yang, Liu Yinong, Cui Lishan, Huang Bingmin, Hao Shijie. Endowing low fatigue for elastocaloric effect by refined hierarchical microcomposite in additive manufactured NiTiCuCo alloy[J]. International Journal of Extreme Manufacturing, 2024, 6(4): 45501 Copy Citation Text show less
References

[1] Hou H L, Qian S X and Takeuchi I 2022 Materials, physics and systems for multicaloric cooling Nat. Rev. Mater.7 633–52

[2] Cong D Y et al 2019 Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys Phys. Rev. Lett.122 255703

[3] Qian S X, Geng Y L, Wang Y, Ling J Z, Hwang Y, Radermacher R, Takeuchi I and Cui J 2016 A review of elastocaloric cooling: materials, cycles and system integrations Int. J. Refrig.64 1–19

[4] Pataky G J, Ertekin E and Sehitoglu H 2015 Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl Acta Mater.96 420–7

[5] Qian S X, Catalini D, Muehlbauer J, Liu B Y, Mevada H, Hou H L, Hwang Y, Radermacher R and Takeuchi I 2023 High-performance multimode elastocaloric cooling system Science380 722–7

[6] Hou H L et al 2019 Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing Science366 1116–21

[7] Bonnot E, Romero R, Ma˜nosa L, Vives E and Planes A 2008 Elastocaloric effect associated with the martensitic transition in shape-memory alloys Phys. Rev. Lett.100 125901

[8] Hou H L, Simsek E, Stasak D, Hasan N A, Qian S X, Ott R, Cui J and Takeuchi I 2017 Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat J. Phys. D: Appl. Phys.50 404001

[9] Yang Z, Cong D Y, Yuan Y, Li R G, Zheng H X, Sun X M, Nie Z H, Ren Y and Wang Y D 2020 Large room-temperature elastocaloric effect in a bulk polycrystalline Ni-Ti-Cu-Co alloy with low isothermal stress hysteresis Appl. Mater. Today21 100844

[10] Ciss C and Zaeem M A 2021 Design of NiTi-based shape memory microcomposites with enhanced elastocaloric performance by a fully thermomechanical coupled phase-field model Mater. Des.207 109898

[11] Cao Y X et al 2020 Large tunable elastocaloric effect in additively manufactured Ni–Ti shape memory alloys Acta Mater.194 178–89

[12] Ossmer H, Lambrecht F, Gltig M, Chluba C, Quandt E and Kohl M 2014 Evolution of temperature profiles in TiNi films for elastocaloric cooling Acta Mater.81 9–20

[13] Ding L, Zhou Y M, Xu Y Y, Dang P F, Ding X D, Sun J, Lookman T and Xue D Z 2021 Learning from superelasticity data to search for Ti-Ni alloys with large elastocaloric effect Acta Mater.218 117200

[14] Chen J Y, Liu B Q, Xing L L, Liu W, Lei L P and Fang G 2022 Toward tunable mechanical behavior and enhanced elastocaloric effect in NiTi alloy by gradient structure Acta Mater.226 117609

[15] Gu H L, Bumke L, Chluba C, Quandt E and James R D 2018 Phase engineering and supercompatibility of shape memory alloys Mater. Today21 265–77

[16] Chluba C, Ge W W, De Miranda R L, Strobel J, Kienle L, Quandt E and Wuttig M 2015 Ultralow-fatigue shape memory alloy films Science348 1004–7

[17] Bumke L, Zamponi C, Jetter J and Quandt E 2020 Cu-rich Ti52.8Ni22.2Cu22.5Co2.5 shape memory alloy films with ultra-low fatigue for elastocaloric applications J. Appl. Phys.127 225105

[18] Ossmer H, Chluba C, Gueltig M, Quandt E and Kohl M 2015 Local evolution of the elastocaloric effect in TiNi-based films Shape Mem. Superelasticity1 142–52

[19] Bechtold C, Chluba C, De Miranda R L and Quandt E 2012 High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films Appl. Phys. Lett.101 091903

[20] Ahadi A, Ghorabaei A S, Shirazi H and Nili-Ahmadabadi M 2021 Bulk NiTiCuCo shape memory alloys with ultra-high thermal and superelastic cyclic stability Scr. Mater.200 113899

[21] Dang P F et al 2022 Low-fatigue and large room-temperature elastocaloric effect in a bulk Ti49.2Ni40.8Cu10 alloy Acta Mater.229 117802

[22] Chen J Y, Lei L P and Fang G 2021 Elastocaloric cooling of shape memory alloys: a review Mater. Today Commun.28 102706

[23] Kirsch S M, Welsch F, Michaelis N, Schmidt M, Wieczorek A, Frenzel J, Eggeler G, Schtze A and Seelecke S 2018 NiTi-based elastocaloric cooling on the macroscale: from basic concepts to realization Energy Technol.6 1567–87

[24] Ishida A, Sato M and Ogawa K 2006 Microstructure and shape-memory behavior of annealed Ti51.5Ni33.1Cu15.4 thin films Phil. Mag. Lett.86 13–20

[25] Meng X L, Sato M and Ishida A 2008 Structure of martensite in Ti-rich Ti-Ni-Cu thin films annealed at different temperatures Acta Mater.56 3394–402

[26] Ishida A, Sato M and Gao Z Y 2014 Effects of Ti content on microstructure and shape memory behavior of TixNi(84.5−x)Cu15.5 (x = 44.6–55.4) thin films Acta Mater.69 292–300

[27] Lu H Z et al 2022 Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting J. Mater. Sci. Technol.101 205–16

[28] Wang J C, Zhu R, Liu Y J and Zhang L C 2023 Understanding melt pool characteristics in laser powder bed fusion: an overview of single- and multi-track melt pools for process optimization Adv. Powder Mater.2 100137

[29] Wei S S, Zhang J L, Zhang L, Zhang Y J, Song B, Wang X B, Fan J X, Liu Q and Shi Y S 2023 Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: a review Int. J. Extreme Manuf.5 032001

[30] Chen W, Gu D D, Yang J K, Yang Q, Chen J and Shen X F 2022 Compressive mechanical properties and shape memory effect of NiTi gradient lattice structures fabricated by laser powder bed fusion Int. J. Extreme Manuf.4 045002

[31] Zhang C, Zhu J K, Zheng H, Li H, Liu S and Cheng G J 2020 A review on microstructures and properties of high entropy alloys manufactured by selective laser melting Int. J. Extreme Manuf.2 032003

[32] Wei C, Zhang Z Z, Cheng D X, Sun Z, Zhu M H and Li L 2021 An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales Int. J. Extreme Manuf.3 012003

[33] Ren J et al 2022 Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing Nature608 62–68

[34] Ren J et al 2023 Deformation mechanisms in an additively manufactured dual-phase eutectic high-entropy alloy Acta Mater.257 119179

[35] Guo Y N, Su H J, Zhou H T, Shen Z L, Liu Y, Zhang J, Liu L and Fu H Z 2022 Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting J. Mater. Sci. Technol.111 298–306

[36] Zhu Y M et al 2022 Ultrastrong nanotwinned titanium alloys through additive manufacturing Nat. Mater.21 1258–62

[37] Guo W Q, Feng B, Yang Y, Ren Y, Liu Y N, Yang H, Yang Q, Cui L S, Tong X and Hao S J 2022 Effect of laser scanning speed on the microstructure, phase transformation and mechanical property of NiTi alloys fabricated by LPBF Mater. Des.215 110460

[38] Feng B, Wang C, Zhang Q Q, Ren Y, Cui L S, Yang Q and Hao S J 2022 Effect of laser hatch spacing on the pore defects, phase transformation and properties of selective laser melting fabricated NiTi shape memory alloys Mater. Sci. Eng. A 840 142965

[39] Ma H Y, Wang J C, Qin P, Liu Y J, Chen L Y, Wang L Q and Zhang L C 2024 Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition: microstructure, defects, and mechanical behavior J. Mater. Sci. Technol.183 32–62

[40] Wang X B et al 2020 Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting Addit. Manuf.36 101545

[41] Bakhtiari S, Li Y C, Sarkar S, Yang H, Cui L S and Liu Y N 2022 Deformation induced martensite stabilization of NiTi in constrained composite systems Mater. Sci. Eng. A 857 144128

[42] Liu Z Y, Cui L S, Liu Y N, Jiang D Q, Jiang J, Shi X B, Shao Y and Zheng Y J 2014 Influence of internal stress coupling on the deformation behavior of NiTi-Nb nanowire composites Scr. Mater.77 75–78

[43] Feng B et al 2020 In-situ synchrotron high energy x-ray diffraction study of micro-mechanical behaviour of R phase reorientation in nanocrystalline NiTi alloy Acta Mater.194 565–76

[44] Kong X G, Hao S J, Ren Y, Yang Y, Feng B, Guo F M, Yang Q, Huang B M and Cui L S 2022 Interactions between martensitic NiTi shape memory alloy and Nb nanowires in composite wire during tensile deformation Composites B 234 109690

[45] Li Y F, Tang S L, Gao Y M, Ma S Q, Zheng Q L and Cheng Y H 2017 Mechanical and thermodynamic properties of intermetallic compounds in the Ni-Ti system Int. J. Mod. Phys. B 31 1750161

[46] Zhang J S, Hao S J, Jiang D Q, Huan Y, Cui L S, Liu Y N, Yang H and Ren Y 2017 In situ synchrotron high-energy x-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix Acta Mater.130 297–309

[47] Hao S J, Cui L S, Ren Y, Han X D et al 2013 A transforming metal nanocomposite with large elastic strain, low modulus, and high strength Science339 1191–4

[48] Zhang J S, Liu Y N, Ren Y, Huan Y, Hao S J, Yu C, Shao Y, Ru Y D, Jiang D Q and Cui L S 2014 In situ synchrotron x-ray diffraction study of deformation behavior and load transfer in a Ti2Ni-NiTi composite Appl. Phys. Lett.105 041910

[49] Zhu Z G, Ng F L, Seet H L, Lu W J, Liebscher C H, Rao Z Y, Raabe D and Nai S M L 2022 Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation Mater. Today52 90–101

[50] Wang J C, Liu Y J, Liang S X, Zhang Y S, Wang L Q, Sercombe T B and Zhang L C 2022 Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder J. Mater. Sci. Technol.105 1–16

[51] Martin J H, Yahata B D, Hundley J M, Mayer J A, Schaedler T A and Pollock T M 2017 3D printing of high-strength aluminium alloys Nature549 365–9

[52] Sui S, Chew Y, Weng F, Tan C L, Du Z L and Bi G J 2022 Study of the intrinsic mechanisms of nickel additive for grain refinement and strength enhancement of laser aided additively manufactured Ti-6Al-4V Int. J. Extreme Manuf.4 035102

[53] Pan X Y and Qiu C L 2022 Promoting columnar-to-equiaxed transition in AlCoCrFeNi high entropy alloy during selective laser melting by adding Cr3C2Mater. Res. Lett.10 788–96

[54] Chokshi A H, Rosen A, Karch J and Gleiter H 1989 On the validity of the hall-petch relationship in nanocrystalline materials Scr. Metall.23 1679–83

[55] Furukawa M, Horita Z, Nemoto M, Valiev R Z and Langdon T G 1996 Microhardness measurements and the Hall-Petch relationship in an Al Mg alloy with submicrometer grain size Acta Mater.44 4619–29

[56] Nieh T G and Wadsworth J 1991 Hall-petch relation in nanocrystalline solids Scr. Metall. Mater.25 955–8

[57] Zhang J S, Hao S J, Jiang D Q, Huan Y, Cui L S, Liu Y N, Ren Y and Yang H 2018 Dual phase synergy enabled large elastic strains of nanoinclusions in a dislocation slip matrix composite Nano Lett.18 2976–83

[58] Pelton A R 2011 Nitinol fatigue: a review of microstructures and mechanisms J. Mater. Eng. Perform.20 613–7

Feng Bo, Liu Helong, Yang Ying, Shen Hui, Ren Yang, Liu Yinong, Cui Lishan, Huang Bingmin, Hao Shijie. Endowing low fatigue for elastocaloric effect by refined hierarchical microcomposite in additive manufactured NiTiCuCo alloy[J]. International Journal of Extreme Manufacturing, 2024, 6(4): 45501
Download Citation