• Chinese Journal of Lasers
  • Vol. 51, Issue 11, 1101024 (2024)
Hao Ruan1,*, Qiao Hu1,2, and Miao Zhao1
Author Affiliations
  • 1Photonic Integrated Circuits Center, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL231559 Cite this Article Set citation alerts
    Hao Ruan, Qiao Hu, Miao Zhao. Research Progress of Ultra‑High Density Optical Storage[J]. Chinese Journal of Lasers, 2024, 51(11): 1101024 Copy Citation Text show less
    References

    [2] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 3, e177(2014).

    [4] Gu M, Li X P. The road to multi-dimensional bit-by-bit optical data storage[J]. Optics and Photonics News, 21, 28-33(2010).

    [5] Kaiser W, Garrett C G. Two-photon excitation in CaF2∶Eu2+[J]. Physical Review Letters, 7, 229(1961).

    [6] Strickler J H, Webb W W. Three-dimensional optical data storage in refractive media by two-photon point excitation[J]. Optics Letters, 16, 1780-1782(1991).

    [7] Walker E, Dvornikov A, Coblentz K et al. Toward terabyte two-photon 3D disk[J]. Optics Express, 15, 12264-12276(2007).

    [8] Wang M M, Esener S C. Three-dimensional optical data storage in a fluorescent dye-doped photopolymer[J]. Applied Optics, 39, 1826-1834(2000).

    [9] Cai J W, Huang W H. Three-dimensional information storage of polymer doped with nano-silver[J]. Microwave and Optical Technology Letters, 57, 2662-2665(2015).

    [10] Tan D Z, Jiang P, Xu B B et al. Single-pulse-induced ultrafast spatial clustering of metal in glass: fine tunability and application[J]. Advanced Photonics Research, 2, 2000121(2021).

    [11] Dvornikov A S, Walker E P, Rentzepis P M. Two-photon three-dimensional optical storage memory[J]. The Journal of Physical Chemistry A, 113, 13633-13644(2009).

    [12] Day D, Gu M. Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer[J]. Applied Optics, 37, 6299-6304(1998).

    [13] Xu D Y[M]. High density optical data storage, 277-339(2003).

    [14] Sekkat Z, Knoll W. Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties[J]. Journal of the Optical Society of America B, 12, 1855-1867(1995).

    [15] Alasfar S, Ishikawa M, Kawata Y et al. Polarization-multiplexed optical memory with urethane-urea copolymers[J]. Applied Optics, 38, 6201-6204(1999).

    [16] Li X P, Chon J W M, Wu S H et al. Rewritable polarization-encoded multilayer data storage in 2, 5-dimethyl-4‑(p-nitrophenylazo) anisole doped polymer[J]. Optics Letters, 32, 277-279(2007).

    [17] Qiu J R, Kojima K, Miura K et al. Infrared femtosecond laser pulse induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass[J]. Optics Letters, 24, 786-788(1999).

    [18] Miura K, Qiu J R, Fujiwara S et al. Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions[J]. Applied Physics Letters, 80, 2263-2265(2002).

    [19] Sun K, Tan D Z, Fang X Y et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 375, 307-310(2022).

    [20] Wang Z, Zhang B, Tan D Z et al. Ostensibly perpetual optical data storage in glass with ultra-high stability and tailored photoluminescence[J]. Opto-Electronic Advances, 6, 220008(2023).

    [21] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 459, 410-413(2009).

    [22] Dai Q F, Ouyang M, Yuan W G et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory[J]. Advanced Materials, 29, 1701918(2017).

    [23] Zhang Q M, Xia Z L, Cheng Y B et al. High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites[J]. Nature Communications, 9, 1183(2018).

    [24] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [25] Ouyang X, Xu Y, Xian M C et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing[J]. Nature Photonics, 15, 901-907(2021).

    [26] Sakakura M, Lei Y H, Wang L et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass[J]. Light, Science & Applications, 9, 15(2020).

    [27] Liu Z T, Yuan Y M, Li Z Y et al. Interaction between ultrafast laser and transparent hard materials: from phase change mechanism to eternal optical data storage[J]. Chinese Journal of Lasers, 50, 1813005(2023).

    [28] Shimotsuma Y, Sakakura M, Kazansky P G et al. Ultrafast manipulation of self-assembled form birefringence in glass[J]. Advanced Materials, 22, 4039-4043(2010).

    [29] Zhang J Y, Gecevičius M, Beresna M et al. Seemingly unlimited lifetime data storage in nanostructured glass[J]. Physical Review Letters, 112, 033901(2014).

    [30] Zhang J, Čerkauskaitė A, Drevinskas R et al. Eternal 5D data storage by ultrafast laser writing in glass[J]. Proceedings of SPIE, 9736, 97360U(2016).

    [31] Yamauchi H, Miyamoto H, Sakamoto T et al. A 24×-speed CIRC decoder for a CD-DSP/CD-ROM decoder LSI[J]. IEEE Transactions on Consumer Electronics, 43, 483-490(1997).

    [32] Riggle C M, McCarthy S G. Design of error correction systems for disk drives[J]. IEEE Transactions on Magnetics, 34, 2362-2371(1998).

    [33] Hwang S H, Lee Y W, Han S H et al. Block and codeword interleaving scheme for the high density digital versatile disc[J]. Japanese Journal of Applied Physics, 41, 1767-1771(2002).

    [34] Ng Y, Kumar B V K V, Cai K et al. Picket-shift codes for bit-patterned media recording with insertion/deletion errors[J]. IEEE Transactions on Magnetics, 46, 2268-2271(2010).

    [35] Blu-ray Disk Association[M]. White paper, blu-ray discTM format: general(2015).

    [36] Zhang Z Y, Liu Z C, Wu D Z. Prediction of melt pool temperature in directed energy deposition using machine learning[J]. Additive Manufacturing, 37, 101692(2021).

    [37] Wang H J, Lei Y H, Wang L et al. 100-layer error-free 5D optical data storage by ultrafast laser nanostructuring in glass[J]. Laser & Photonics Reviews, 16, 2100563(2022).

    [38] Yan Z, Gao J C, Beresna M et al. Near-field mediated 40 nm in-volume glass fabrication by femtosecond laser[J]. Advanced Optical Materials, 10, 2101676(2022).

    [40] Wang Z, Zhang B, Wang Z Q et al. 3D imprinting of voxel-level structural colors in lithium niobate crystal[J]. Advanced Materials, 35, 2303256(2023).

    [41] Wei J S, Zhang Y P, Ruan H et al. Near-field optical recording and its recent progress[J]. Progress in Physics, 22, 188-197(2002).

    [42] Gan F X, Wang Y. Breaking through the optical diffraction limits, developing the nano-optics and photonics[J]. Acta Optica Sinica, 31, 0900104(2011).

    [43] Zhao S L, Geng Y Y, Shi H R. Study on super-resolution readout performance of Si-doped Ag film[J]. Acta Optica Sinica, 32, 0631004(2012).

    [44] di Francia G T. Super-gain antennas and optical resolving power[J]. Il Nuovo Cimento, 1943, 426-438(9).

    [45] Yamanaka Y, Hirose Y, Fujii H et al. High density recording by superresolution in an optical disk memory system[J]. Applied Optics, 29, 3046-3051(1990).

    [46] Quabis S, Dorn R, Eberler M et al. Focusing light to a tighter spot[J]. Optics Communications, 179, 1-7(2000).

    [47] Li X P, Cao Y Y, Gu M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 36, 2510-2512(2011).

    [48] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [49] Wu Z Y, Xu X Z, Xi P. Stimulated emission depletion microscopy for biological imaging in four dimensions: a review[J]. Microscopy Research and Technique, 84, 1947-1958(2021).

    [50] Scott T F, Kowalski B A, Sullivan A C et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 324, 913-917(2009).

    [51] Klar T A, Wollhofen R, Jacak J. Sub-Abbe resolution: from STED microscopy to STED lithography[J]. Physica Scripta, 162, 014049(2014).

    [52] Fischer J, von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography[J]. Advanced Materials, 22, 3578-3582(2010).

    [53] Gan Z S, Cao Y Y, Evans R A et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 4, 2061(2013).

    [54] Grotjohann T, Testa I, Leutenegger M et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP[J]. Nature, 478, 204-208(2011).

    [55] Li X P, Cao Y Y, Tian N et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2, 567-570(2015).

    [56] Zhu D Z, Xu L, Ding C L et al. Direct laser writing breaking diffraction barrier based on two-focus parallel peripheral-photoinhibition lithography[J]. Advanced Photonics, 4, 066002(2022).

    [57] Wang H Q, Wen J S, Yang Z Y et al. High-speed parallel two-photon laser direct writing lithography system[J]. Chinese Journal of Lasers, 49, 2202009(2022).

    [58] Liu X, Kuang C F. High throughput laser nano direct writing technique[J]. Acta Optica Sinica, 42, 1714005(2022).

    [59] Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit[J]. Laser & Photonics Reviews, 7, 22-44(2013).

    [60] Gan Z S, Cao Y Y, Jia B H et al. Dynamic modeling of superresolution photoinduced-inhibition nanolithography[J]. Optics Express, 20, 16871-16879(2012).

    [61] Xie F, Song S C, Liang L L et al. Sub-100 nm pixel pitch via STED photolithography with a nanoprinting-at-expansion/employments-at-recovery strategy[J]. Optics Express, 31, 2892-2901(2023).

    [62] Lamon S, Wu Y, Zhang Q et al. Nanoscale optical writing through upconversion resonance energy transfer[J]. Science Advances, 7, eabe2209(2021).

    [63] Luo J D, Xie Z L, LAM J W Y et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chemical Communications, 1740-1741(2001).

    [64] Yuan X P, Zhao M, Gan Z S et al. Aggregation-induced emission of tetraphenylethene photoresist film and their application in optical data storage[J]. Proceedings of SPIE, 11335, 1133508(2019).

    [65] Yuan X P, Zhao M, Guo X J et al. Zn2+ responsive fluorescence enhancement for optical data storage[J]. Applied Optics, 59, 1249-1252(2020).

    [66] Zhao M, Wen J, Hu Q et al. A 3D nanoscale optical disk memory withpetabit capacity[J]. Nature, 626, 772-778(2024).