• Chinese Optics Letters
  • Vol. 23, Issue 4, 043602 (2025)
Wenjin Zhou1,2, Lei Xi1,2, Min Yang1,2, Guofeng Zhang1,2..., Chengbing Qin1,2, Jianyong Hu1,2, Yao Zhang3, Ruiyun Chen1,2,*, Liantuan Xiao1,2,** and Suotang Jia1,2|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.3788/COL202523.043602 Cite this Article Set citation alerts
    Wenjin Zhou, Lei Xi, Min Yang, Guofeng Zhang, Chengbing Qin, Jianyong Hu, Yao Zhang, Ruiyun Chen, Liantuan Xiao, Suotang Jia, "Evolution of multipeak spectral features in SERS reveals atomic-scale structural fluctuations in plasmonic nanocavities," Chin. Opt. Lett. 23, 043602 (2025) Copy Citation Text show less
    References

    [1] N. Kongsuwan, A. Demetriadou, M. Horton et al. Plasmonic nanocavity modes: from near-field to far-field radiation. ACS Photonics, 7, 463(2020).

    [2] S. Huang, T. Ming, Y. Lin et al. Ultrasmall mode volumes in plasmonic cavities of nanoparticle-on-mirror structures. Small, 12, 5190(2016).

    [3] R. Chikkaraddy, B. de Nijs, F. Benz et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127(2016).

    [4] T. B. Hoang, G. M. Akselrod, C. Argyropoulos et al. Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun., 6, 7788(2015).

    [5] V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud et al. Controlling light localization and light–matter interactions with nanoplasmonics. Small, 6, 2498(2010).

    [6] L. A. Jakob, W. M. Deacon, Y. Zhang et al. Giant optomechanical spring effect in plasmonic nano- and picocavities probed by surface-enhanced Raman scattering. Nat. Commun., 14, 3291(2023).

    [7] R. Zhang, Y. Zhang, Z. C. Dong et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498, 82(2013).

    [8] F. Benz, M. K. Schmidt, A. Dreismann et al. Single-molecule optomechanics in “picocavities”. Science, 354, 726(2016).

    [9] C. Zong, C.-J. Chen, X. Wang et al. Single-molecule level rare events revealed by dynamic surface-enhanced Raman spectroscopy. Anal. Chem., 92, 15806(2020).

    [10] D. G. Baranov, M. Wersäll, J. Cuadra et al. Novel nanostructures and materials for strong light–matter interactions. ACS Photonics, 5, 24(2018).

    [11] H. Yu, Y. Peng, Y. Yang et al. Plasmon-enhanced light–matter interactions and applications. npj Comput. Mater., 5, 45(2019).

    [12] K. M. Mayer, J. H. Hafner. Localized surface plasmon resonance sensors. Chem. Rev., 111, 3828(2011).

    [13] B. Wang, X.-Z. Zeng, Z.-Y. Li. Quantum versus optical interaction contribution to giant spectral splitting in a strongly coupled plasmon-molecules system. Photonics Res., 8, 343(2020).

    [14] J.-S. Lin, X.-D. Tian, G. Li et al. Advanced plasmonic technologies for multi-scale biomedical imaging. Chem. Soc. Rev., 51, 9445(2022).

    [15] P. Liu, D. V. Chulhai, L. Jensen. Single-molecule imaging using atomistic near-field tip-enhanced raman spectroscopy. ACS Nano, 11, 5094(2017).

    [16] A. B. Zrimsek, N. Chiang, M. Mattei et al. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev., 117, 7583(2017).

    [17] X. Chen, P. Liu, Z. Hu et al. High-resolution tip-enhanced Raman scattering probes sub-molecular density changes. Nat. Commun., 10, 2567(2019).

    [18] H.-H. Shin, G. J. Yeon, H.-K. Choi et al. Frequency-domain proof of the existence of atomic-scale SERS hot-spots. Nano Lett., 18, 262(2018).

    [19] W. Chen, P. Roelli, A. Ahmed et al. Intrinsic luminescence blinking from plasmonic nanojunctions. Nat. Commun., 12, 2731(2021).

    [20] M. M. Schmidt, E. A. Farley, M. A. Engevik et al. High-speed spectral characterization of single-molecule SERS fluctuations. ACS Nano, 17, 6675(2023).

    [21] C. Carnegie, J. Griffiths, B. de Nijs et al. Room-temperature optical picocavities below 1 nm3 accessing single-atom geometries. J. Phys. Chem. Lett., 9, 7146(2018).

    [22] N. C. Lindquist, C. D. L. de Albuquerque, R. G. Sobral-Filho et al. High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. Nat. Nanotechnol., 14, 981(2019).

    [23] S. R. Emory, R. A. Jensen, T. Wenda et al. Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS. Faraday Discuss., 132, 249(2006).

    [24] W. Azzam, C. Fuxen, A. Birkner et al. Coexistence of different structural phases in Thioaromatic monolayers on Au(111). Langmuir, 19, 4958(2003).

    [25] A. Ahmed, K. Banjac, S. S. Verlekar et al. Structural order of the molecular Adlayer impacts the stability of nanoparticle-on-mirror plasmonic cavities. ACS Photonics, 8, 1863(2021).

    [26] E. Dulkeith, T. Niedereichholz, T. Klar et al. Plasmon emission in photoexcited gold nanoparticles. Phys. Rev. B, 70, 205424(2004).

    [27] K. Kolwas, A. Derkachova. Impact of the interband transitions in gold and silver on the dynamics of propagating and localized surface plasmons. Nanomaterials, 10, 1411(2020).

    [28] J. Griffiths, T. Földes, B. de Nijs et al. Resolving sub-angstrom ambient motion through reconstruction from vibrational spectra. Nat. Commun., 12, 6759(2021).

    [29] J. J. Baumberg. Picocavities: a primer. Nano Lett., 22, 5859(2022).

    [30] Y. Zhang, Z.-C. Dong, J. Aizpurua. Theoretical treatment of single-molecule scanning Raman picoscopy in strongly inhomogeneous near fields. J. Raman Spectrosc., 52, 296(2021).

    [31] M. Moskovits, D. P. DiLella, K. J. Maynard. Surface Raman spectroscopy of a number of cyclic aromatic molecules adsorbed on silver: selection rules and molecular reorientation. Langmuir, 4, 67(1988).

    [32] J. Griffiths, B. de Nijs, R. Chikkaraddy et al. Locating single-atom optical picocavities using wavelength-multiplexed Raman scattering. ACS Photonics, 8, 2868(2021).

    [33] N. C. Lindquist, A. G. Brolo. Ultra-high-speed dynamics in surface-enhanced raman scattering. J. Phys. Chem. C, 125, 7523(2021).

    Wenjin Zhou, Lei Xi, Min Yang, Guofeng Zhang, Chengbing Qin, Jianyong Hu, Yao Zhang, Ruiyun Chen, Liantuan Xiao, Suotang Jia, "Evolution of multipeak spectral features in SERS reveals atomic-scale structural fluctuations in plasmonic nanocavities," Chin. Opt. Lett. 23, 043602 (2025)
    Download Citation