• Resources Science
  • Vol. 42, Issue 8, 1477 (2020)
Jianbai HUANG1, Fang SUN1, and Yi SONG2、*
Author Affiliations
  • 1School of Business, Central South University, Changsha 410083, China
  • 2School of Economics and Management, China University of Geosciences (Wuhan), Wuhan 430074, China
  • show less
    DOI: 10.18402/resci.2020.08.04 Cite this Article
    Jianbai HUANG, Fang SUN, Yi SONG. Supply risk assessment of critical metals in clean energy technology[J]. Resources Science, 2020, 42(8): 1477 Copy Citation Text show less
    References

    [1] Pr?v?lieR, BandocG. Nuclear energy: Between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications[J]. Journal of Environmental Management, 209, 81-92(2019).

    [2] SumanS. Hybrid nuclear-renewable energy systems: A review[J]. Journal of Cleaner Production, 181, 166-177(2018).

    [3] World Energy Outlook 2019[report]. Paris: World Energy Outlook(2019).

    [4] Cheng CT, Lo SL, Lin TT. Applying real options analysis to assess cleaner energy development strategies[J]. Energy Policy, 39, 5929-5938(2011).

    [5] Kwon PS, ?stergaard PA. Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (coherent energy and environmental system analysis), and climate commission 2050[J]. Energy, 46, 275-282(2012).

    [6] KnopfB, NahmmacherP, SchmidE. The European renewable energy target for 2030: An impact assessment of the electricity sector[J]. Energy Policy, 85, 50-60(2015).

    [7] GrandellL, Lehtil?A, KivinenM et al. Role of critical metals in the future markets of clean energy technologies[J]. Renewable Energy, 95, 53-62(2016).

    [8] Pieroni M PP, McAloone TC, Pigosso D CA. Business model innovation for circular economy and sustainability: A review of approaches[J]. Journal of Cleaner Production, 215, 198-216(2019).

    [9] ElshkakiA, ShenL. Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications[J]. Energy, 180, 903-917(2019).

    [10] 陈其慎, 张艳飞, 倪善芹, 等. 日本矿产资源经略强国战略分析[J]. 中国矿业, 2017,26(12):8-15. [Chen QS, Zhang YF, Ni SQ, et al. Discussion on the mineral resources strategic power in Japan[J]. China Mining Magazine, 2017,26(12):8-15.] [Chen Q S, Zhang Y F, Ni S Q, et al. Discussion on the mineral resources strategic power in Japan[J]. China Mining Magazine, 2017, 26(12): 8-15.]

    [11] 王安建, 王高尚, 邓祥征, 等. 新时代中国战略性关键矿产资源安全与管理[J]. 中国科学基金, 2019,33(2):133-140. [Wang AJ, Wang GS, Deng XZ, et al. Security and management of China’s critical mineral resources in the new era[J]. Bulletin of National Natural Science Foundation of China, 2019,33(2):133-140.] [Wang A J, Wang G S, Deng X Z, et al. Security and management of China’s critical mineral resources in the new era[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 133-140.]

    [12] Brussels EC. Critical Raw Materials for the EU: Report of the Ad-hoc Working Group on Defining Critical Raw Materials[report]. Berlin: Critical Raw Materials for the EU(2010).

    [13] EntrD. Report on Critical Raw Materials for the EU[report]. Luxembourg: Publications Office of the European Union(2015).

    [14] Blengini GA, BlagoevaD, DewulfJ et al. Assessment of the Methodology for Establishing the EU List of Critical Raw Materials-Background report[report]. Luxemburg: JRC Technical Reports(2017).

    [15] 龙如银, 杨家慧. 国家矿产资源安全研究现状及展望[J]. 资源科学, 2018,40(3):465-476.

    [16] 王昶, 宋慧玲, 左绿水, 等. 国家金属资源安全研究回顾与展望[J]. 资源科学, 2017,39(5):805-817.

    [17] 马玉芳, 沙景华, 闫晶晶, 等. 中国镍资源供应安全评价与对策研究[J]. 资源科学, 2019,41(7):1317-1328.

    [18] 刘全文, 沙景华, 闫晶晶, 等. 中国铬资源供应风险评价与对策研究[J]. 资源科学, 2018,40(3):516-525.

    [19] 范松梅, 沙景华, 闫晶晶, 等. 中国铁矿石资源供应风险评价与治理研究[J]. 资源科学, 2018,40(3):507-515.

    [20] Moss RL, TzimasE, KaraH et al. The potential risks from metals bottlenecks to the deployment of strategic energy technologies[J]. Energy Policy, 55, 556-564(2013).

    [21] Blengini GA, NussP, DewulfJ et al. EU methodology for critical raw materials assessment: Policy needs and proposed solutions for incremental improvements[J]. Resources Policy, 53, 12-19(2017).

    [22] DawG. Security of mineral resources: A new framework for quantitative assessment of criticality[J]. Resources Policy, 53, 173-189(2017).

    [23] 王昶, 宋慧玲, 左绿水, 等. 中国优势金属供应全球需求的风险评估[J]. 自然资源学报, 2018,33(7):1218-1229. [WangC, Song HL, Zuo LS, et al. Risk assessment of China’s preponderant metals’ supplying to global demand[J]. Journal of Natural Resources, 2018,33(7):1218-1229.] [Wang C, Song H L, Zuo L S, et al. Risk assessment of China’s preponderant metals’ supplying to global demand[J]. Journal of Natural Resources, 2018, 33(7): 1218-1229.]

    [24] 张艳飞, 陈其慎, 于汶加, 等. 中国矿产资源重要性二维评价体系构建[J]. 资源科学, 2015,37(5):883-890.

    [25] DawG. Security of mineral resources: A new framework for quantitative assessment of criticality[J]. Resources Policy, 53, 173-189(2017).

    [26] Graedel TE, BarrR, ChandlerC et al. Methodology of metal criticality determination[J]. Environmental Science & Technology: ES&T, 46, 1063-1070(2012).

    [27] Graedel TE, Harper EM, Nassar NT et al. Criticality of metals and metalloids[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 4257-4262(2015).

    [28] 李鹏飞, 杨丹辉, 渠慎宁, 等. 稀有矿产资源的战略性评估: 基于战略性新兴产业发展的视角[J]. 中国工业经济, 2014, (7):44-57. [Li PF, Yang DH, Qu SN, et al. A strategic assessment of rare minerals: Based on the perspective of strategic emerging industries development[J]. China Industrial Economics, 2014, (7):44-57.] [Li P F, Yang D H, Qu S N, et al. A strategic assessment of rare minerals: Based on the perspective of strategic emerging industries development[J]. China Industrial Economics, 2014, (7): 44-57.]

    [29] 王昶, 秦雅, 邵留国, 等. 基于系统动力学的清洁能源技术关键伴生金属可供性研究: 以镓为例[J]. 系统工程, 2018,36(5):116-127. [WangC, QinY, Shao LG, et al. Key associated materials availability in clean energy technologies based on system dynamic: The case study of Gallium[J]. Systems Engineering, 2018,36(5):116-127.] [Wang C, Qin Y, Shao L G, et al. Key associated materials availability in clean energy technologies based on system dynamic: The case study of Gallium[J]. Systems Engineering, 2018, 36(5): 116-127.]

    [30] 王昶, 孙晶, 左绿水, 等. 新能源汽车关键原材料全球供应风险评估[J]. 中国科技论坛, 2018, (4):83-93. [WangC, SunJ, Zuo LS, et al. Evaluation of global supply risk of critical minerals for new energy vehicles[J]. Forum on Science and Technology in China, 2018, (4):83-93.] [Wang C, Sun J, Zuo L S, et al. Evaluation of global supply risk of critical minerals for new energy vehicles[J]. Forum on Science and Technology in China, 2018, (4): 83-93.]

    [31] 王昶, 宋慧玲, 耿红军, 等. 关键新材料创新突破的研究回顾与展望[J]. 资源科学, 2019,41(2):207-218.

    [32] GoeM, GaustadG. Identifying critical materials for photovoltaics in the US: A multi-metric approach[J]. Applied Energy, 123, 387-396(2014).

    [33] HelbigC, Bradshaw AM, WietschelL et al. Supply risks associated with lithium-ion battery materials[J]. Journal of Cleaner Production, 172, 274-286(2018).

    [34] HelbigC, Bradshaw AM, KolotzekC et al. Supply risks associated with CdTe and CIGS thin-film photovoltaics[J]. Applied Energy, 178, 422-433(2016).

    [35] GrandellL, HookM. Assessing rare metal availability challenges for solar energy technologies[J]. Sustainability, 7, 11818-11837(2015).

    [36] ValeroA, ValeroA, CalvoG et al. Material bottlenecks in the future development of green technologies[J]. Renewable & Sustainable Energy Reviews, 93, 178-200(2018).

    [37] HelbigC, Bradshaw AM, WietschelL et al. Supply risks associated with lithium-ion battery materials[J]. Journal of Cleaner Production, 172, 274-286(2018).

    [38] Mineral Commodity Summaries[online](2020). https://www.usgs.gov/centers/nmic/mineral-commodity-summaries

    [39] Graedel TE, AllwoodJ, Birat JP et al. Recycling Rates of Metals: A Status Report[report]. Nairobi: A Report of the Working Group on the Global Metal Flows to the International Resource Panel(2011).

    [40] Graedel TE, Harper EM, Nassar NT et al. On the materials basis of modern society[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 6295-6300(2015).

    [41] Nassar NT, Graedel TE, Harper EM. By-product metals are technologically essential but have problematic supply[J]. Science Advances, 1, e1400180(2015).

    [42] AngererG, Marscheider WF, LüllmannA et al. Raw Materials for Emerging Technologies[report]. Frauenhofer ISI(2009).

    [43] Horizontal Merger Guidelines[online](2010). https://www.ftc.gov/sites/default/files/attachments/mergers/100819hmg.pdf

    [44] WorldBank. The Worldwide Governance Indicators[report]. Washington: The World Bank(2018).

    [45] JacksonT, GreenK P. Fraser Institute Annual Survey of Mining Companies, 2018[online]. https://www.fraserinstitute.org/sites/default/files/annual-survey-of-mining-companies-2018.pdf

    [46] Human Development Report 2019[report]. New York: The United Nations Development Programme(2019).

    [47] 郑人瑞, 唐金荣, 周平, 等. 我国锂资源供应风险评估[J]. 中国矿业, 2016,25(12):30-37. [Zheng RR, Tang JR, ZhouP, et al. Risk assessment of lithium resources supply in China[J]. China Mining Magazine, 2016,25(12):30-37.] [Zheng R R, Tang J R, Zhou P, et al. Risk assessment of lithium resources supply in China[J]. China Mining Magazine, 2016, 25(12): 30-37.]

    Jianbai HUANG, Fang SUN, Yi SONG. Supply risk assessment of critical metals in clean energy technology[J]. Resources Science, 2020, 42(8): 1477
    Download Citation