• Electronics Optics & Control
  • Vol. 30, Issue 4, 45 (2023)
SHI Baodai, ZHANG Qin, LI Yuhuan, and LI Yao
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1671-637x.2023.04.009 Cite this Article
    SHI Baodai, ZHANG Qin, LI Yuhuan, LI Yao. SAR Image Target Recognition Based on Hybrid Attention Mechanism[J]. Electronics Optics & Control, 2023, 30(4): 45 Copy Citation Text show less
    References

    [5] LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE, 1998, 86(11):2278-2324.

    [6] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas, NV:IEEE, 2016:770-778.

    [7] SZEGEDY C, LIU W, JIA Y Q, et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Boston, MA:IEEE, 2015:1-9.

    [8] SZEGEDY C, VANHOUCKE V, IOFFE S, et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas, NV:IEEE, 2016:2818-2826.

    [9] SZEGEDY C, IOFFE S, VANHOUCKE V, et al.Inception-v4, inception-ResNet and the impact of residual connections on learning[EB/OL].(2018-08-23)[2021-08-20].https://arxiv.org/abs/1602.07261.

    [10] WOO S H, PARK J C, LEE J Y, et al.CBAM:convolutional block attention module[EB/OL].(2018-07-18)[2021-08-20].https://arxiv.org/abs/1807.06521.

    [11] WANG Q L, WU B G, ZHU P F, et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle, WA:IEEE, 2020:11531-11539.

    [12] HU J, SHEN L, ALBANIE S.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023.

    [13] ZHAO M H, ZHONG S S, FU X Y, et al.Deep residual shrinkage networks for fault diagnosis[J].IEEE Transactions on Industrial Informatics, 2019, 16(7):4681-4690.

    [15] KEYDEL E R, LEE S W, MOORE J.MSTAR extended operating conditions:a tutorial [C]//Proceeding Volume Algorithms for Synthetic Aperture Radar Imagery Ⅲ.Orlando, FL:SPIE, 1996:228-242.