• Acta Photonica Sinica
  • Vol. 49, Issue 5, 516002 (2020)
LIU Yu, LIU Yu-xue*, JIANG Rong-yun, YANG Jian..., ZHU Han-cheng, YAN Duan-ting, LIU Chun-guang and XU Chang-shan|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20204905.0516002 Cite this Article
    LIU Yu, LIU Yu-xue, JIANG Rong-yun, YANG Jian, ZHU Han-cheng, YAN Duan-ting, LIU Chun-guang, XU Chang-shan. Effects of Y3+ Doping on the Microstructure and Quantum Cutting Luminescence of CaGdAlO4: Pr3+,Yb3+ Phosphors[J]. Acta Photonica Sinica, 2020, 49(5): 516002 Copy Citation Text show less
    References

    [1] XIA Zhi-guo, MEIJERINK A. Ce3+-doped garnet phosphors: composition modification, luminescence properties and applications [J]. Chemical Society Reviews, 2017, 46(1): 275-299.

    [3] ZHOU Lei, WANG Rui, YAO Chi, et al. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers[J]. Nature Communications, 2015, 6: 6938.

    [4] TEN KATEO M, KRMER K W, VAN DER KOLK E. Efficient luminescent solar concentrators based on self-absorption free, Tm2+ doped halides[J]. Solar Energy Materials and Solar Cells, 2015, 140: 115-120.

    [5] XIANG Guo-tao, ZHANG Jia-hua, HAO Zhen-dong, et al. The energy transfer mechanism in Pr3+ and Yb3+ codoped β-NaLuF4 nanocrystals[J]. Physical Chemistry Chemical Physics, 2014, 16(20): 9289-9293.

    [6] GAO Guo-jun, WONDRACZEK L. Near-infrared downconversion in Pr3+/Yb3+ co-doped boro-aluminosilicate glasses and LaBO3 glass ceramics[J]. Optical Materials Express, 2013, 3(5): 633-644.

    [7] BIRD R E, HULSTROM R L, KLIMAN A W, et al. Solar spectral measurements in the terrestrial environment[J]. Applied Optics, 1982, 21(8): 1430-1436. .

    [8] ZHANG Xin-yang, LIU Yu-xue, ZHANG Meng, et al. Efficient deep ultraviolet to near infrared quantum cutting in Pr3+/Yb3+ codoped CaGdAlO4 phosphors[J]. Journal of Alloys and Compounds, 2018, 740: 595-602.

    [9] LI Tao, LI Yan-mei, LUO Ran, et al. Novel Ba (Gd1-xYx) 0.78F5: 20 mol% Yb3+, 2 mol% Tm3+ (0≤x≤ 1.0) solid solution nanocrystals: A facile hydrothermal controlled synthesis, enhanced upconversion luminescent and paramagnetic properties[J]. Journal of Alloys and Compounds, 2018, 740: 1204-1214.

    [10] WU Dan, HAO Zhen-dong, ZHANG Xia, et al. Efficient energy back transfer from Ce3+ 5d state to Pr3+1D2 level in Lu3Al5O12 upon Pr3+ 4f5d excitation[J]. Journal of Luminescence, 2017, 186: 170-174.

    [11] TAMBOLI S, RAJESWARI B, DHOBLE S J. Investigation of UV-emitting Gd3+-doped LiCaBO3 phosphor[J]. Luminescence, 2016, 31(2): 551-556.

    [12] BLASSE G, DIRKSEN G J. Long-range energy transfer from Gd3+ to Pr3+[J]. Journal of Solid State Chemistry, 1988, 73(2): 599-602.

    [13] SONG G L, SONG Y C, SU J, et al. Crystal structure refinement, ferroelectric and ferromagnetic properties of Ho3+modified BiFeO3 multiferroic material[J]. Journal of Alloys and Compounds, 2017, 696: 503- 509.

    [14] KORIR P C, DEJENE F B. The effect of oxygen pressure on the structural and photoluminescence properties of pulsed laser deposited (Y-Gd)3Al5O12: Ce3+ thin films[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(4): 3257-3267.

    [15] GUO Hai-jie, WANG Yu-hua, LI Gen, et al. Cyan emissive super-persistent luminescence and thermoluminescence in BaZrSi3O9: Eu2+, Pr3+ phosphors[J]. Journal of Materials Chemistry C, 2017, 5(11): 2844-2851.

    [16] VAN DER KOLK E, DORENBOS P, VINK A P, et al. Vacuum ultraviolet excitation and emission properties of Pr3+ and Ce3+ in M SO4 (M=Ba, Sr, and Ca) and predicting quantum splitting by Pr3+ in oxides and fluorides[J]. Physical Review B, 2001, 64(19): 195129.

    [17] ARAI M, MATEUDA N, TAMATANI M. Luminescence properties of Pr3+ in monoclinic gadolinium sesquioxide[J]. Journal of Alloys and Compounds, 1993, 192(1-2): 45-47.

    [18] XIN Shuang-yu, ZHU Ge, WANG Bin, et al. The luminescent property and abnormal thermal quenching behavior of Pr3+ ions in novel red phosphor Ca19Mg2 (PO4)14: Pr3+ [J]. Journal of Luminescence, 2017, 181: 455-458.

    [19] AARTS L, ENDE B, REID M F, et al. Downconversion for solar cells in YF3: Pr3+, Yb3+[J]. Spectroscopy Letters, 2010, 43(5): 373-381.

    [20] VAN WIJNGAARDEN J T, SCHEIDELAAR S, VLUGTTJH, et al. Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple[J]. Physical Review B, 2010, 81(15): 155112.

    [21] GUILLE A, PEREIRA A, MOINE B. NaLaF4: Pr3+, Yb3+, an efficient blue to near infra-red quantum cutter[J]. APL Materials, 2013, 1(6): 062106.

    [22] XIA Wen-bin, XIAO Si-guo, YANG Xiao-liang, et al. Quantum cutting and tunable luminescence properties in Pr3+/Sm3+, Yb3+ co-doped SrMoO4 powders[J]. Materials

         Research Bulletin, 2017, 89: 5-10.

    [23] ZHANG Li-li, HU Jie, et al. Near-infrared quantum cutting in Pr3+-Yb3+Co-doped oxyfluoride glass ceramics containing CaF2 nanocrystals[J]. Journal of Wuhan

         University of Technology- Materials Science Edition, 2013, 28(3): 455-459.

    LIU Yu, LIU Yu-xue, JIANG Rong-yun, YANG Jian, ZHU Han-cheng, YAN Duan-ting, LIU Chun-guang, XU Chang-shan. Effects of Y3+ Doping on the Microstructure and Quantum Cutting Luminescence of CaGdAlO4: Pr3+,Yb3+ Phosphors[J]. Acta Photonica Sinica, 2020, 49(5): 516002
    Download Citation