• Chinese Optics Letters
  • Vol. 22, Issue 10, 101404 (2024)
Milun Zhang1, Changwen Xu1,*, Yidan Wei1, Suliao Li1..., Guoyang Liu1, Wenlong Li2 and Dianyuan Fan1|Show fewer author(s)
Author Affiliations
  • 1International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
  • 2Chengdu Dien Photoelectric Technology Co., Ltd., Chengdu 610199, China
  • show less
    DOI: 10.3788/COL202422.101404 Cite this Article Set citation alerts
    Milun Zhang, Changwen Xu, Yidan Wei, Suliao Li, Guoyang Liu, Wenlong Li, Dianyuan Fan, "Continuous-wave and broadly tunable Cr:ZnSe laser pumped by a short wavelength Tm:YLF bulk laser," Chin. Opt. Lett. 22, 101404 (2024) Copy Citation Text show less
    References

    [1] S. B. Mirov, V. V. Fedorov, D. Martyshkin et al. Progress in Mid-IR lasers based on Cr and Fe-doped II–VI chalcogenides. IEEE J. Sel. Top. Quantum Electron., 21, 292(2015).

    [2] R. Chikkaraddy, R. Arul, L. A. Jakob et al. Single-molecule mid-infrared spectroscopy and detection through vibrationally assisted luminescence. Nat. Photonics, 17, 865(2023).

    [3] K. Zou, K. Pang, H. Song et al. High-capacity free-space optical communications using wavelength- and mode-division-multiplexing in the mid-infrared region. Nat. Commun., 13, 7662(2022).

    [4] S. W. Henderson, C. P. Hale, J. R. Magee et al. Eye-safe coherent laser radar system at 2.1 µm using Tm,Ho:YAG lasers. Opt. Lett., 16, 773(1991).

    [5] R. F. Wu, K. S. Lai, H. Wong et al. Multiwatt mid-IR output from a Nd:YALO laser pumped intracavity KTA OPO. Opt. Express, 8, 694(2001).

    [6] M. Razeghi, N. Bandyopadhyay, Y. Bai et al. Recent advances in mid infrared (3–5 µm) quantum cascade lasers. Opt. Mater. Express, 3, 1872(2013).

    [7] H. Nie, F. Wang, J. Liu et al. Rare-earth ions-doped mid-infrared (2.7–3 µm) bulk lasers: a review [Invited]. Chin. Opt. Lett., 19, 091407(2021).

    [8] S. D. Jackson. Continuous wave 2.9 µm dysprosium-doped fluoride fiber laser. Appl. Phys. Lett., 83, 1316(2003).

    [9] S. B. Mirov, I. S. Moskalev, S. Vasilyev et al. Frontiers of mid-IR lasers based on transition metal doped chalcogenides. IEEE J. Sel. Top. Quantum Electron., 24, 1601829(2018).

    [10] E. Sorokin, I. T. Sorokina. Tunable diode-pumped continuous-wave Cr2+:ZnSe laser. Appl. Phys. Lett., 80, 3289(2002).

    [11] L. D. DeLoach, R. H. Page, G. D. Wilke et al. Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media. IEEE J. Quantum Electron., 32, 885(1996).

    [12] T. Konak, M. Tekavec, V. V. Fedorov et al. Electrical, spectroscopic, and laser characterization of γ-irradiated transition metal doped II–VI semiconductors. Opt. Mater. Express, 3, 777(2013).

    [13] J. R. Macdonald, S. J. Beecher, P. A. Berry et al. Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm. Opt. Lett., 38, 2194(2013).

    [14] P. A. Berry, J. R. Macdonald, S. J. Beecher et al. Fabrication and power scaling of a 1.7 W Cr:ZnSe waveguide laser. Opt. Mater. Express, 3, 1250(2013).

    [15] Y. Yang, Y. Tang, J. Xu et al. Watt-level CW output from ceramic Cr2+:ZnSe laser. Proc. SPIE, 6823, 682313(2008).

    [16] I. S. Moskalev, V. V. Fedorov, S. B. Mirov. Tunable, single-frequency, and multi-watt continuous-wave Cr2+:ZnSe lasers. Opt. Express, 16, 4145(2008).

    [17] I. S. Moskalev, V. V. Fedorov, S. B. Mirov et al. 12-Watt CW polycrystalline Cr2+:ZnSe laser pumped by Tm-fiber laser. Advanced Solid-State Photonics, WB30(2009).

    [18] E. Sorokin, I. T. Sorokina, M. S. Mirov et al. Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers. Lasers, Sources and Related Photonic Devices, AMC2(2010).

    [19] S. Mirov, V. Fedorov, D. Martyshkin et al. Mid-IR lasers based on transition metal and rare-earth ion doped crystals. Proc. SPIE, 9467, 94672K(2015).

    [20] Y. F. Dai, Y. Y. Li, X. Zou et al. High-efficiency broadly tunable Cr:ZnSe single crystal laser pumped by Tm:YLF laser. Laser Phys. Lett., 10, 105816(2013).

    [21] X. Zou, Y. F. Dai, Y. Y. Li et al. Cr:ZnSe single crystal laser by pumping into the zero phonon line for efficiency enhancement. Laser Phys. Lett., 11, 115810(2014).

    [22] Q. Wang, C. Liu, L. Qi et al. Wavelength tunable single-frequency Cr:ZnSe laser. Proc. SPIE, 11437, 114370H(2020).

    [23] A. Říha, H. Jelínková, M. E. Doroshenko et al. Laser-diode-pumped Cr:ZnSe CW laser tunable in mid-IR range of 2.05–2.65 µm. Proc. SPIE, 12577, 125770E(2023).

    [24] Q. Na, C. Xu, Z. Huang et al. High-power and high-efficiency short wavelength operation of a Tm:YLF laser at 1.83 µm. Opt. Lett., 44, 4403(2019).

    [25] R. Danilin, V. Fedorov, D. Martyshkin et al. Spectral narrowing and broadening of Cr:ZnS/Se laser oscillation due to mode competition and spatial hole burning in the gain element. Opt. Express, 31, 12686(2023).

    [26] S. Mirov, V. Fedorov, I. Moskalev et al. Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors. J. Lumin., 133, 268(2013).

    [27] N. Coluccelli, M. Cassinerio, P. Laporta et al. 100 kHz linewidth Cr2+:ZnSe ring laser tunable from 2.12 to 2.58 µm. Opt. Lett., 37, 5088(2012).

    [28] X. Bu, H. Shi, Z. Cheng et al. Tunable narrow-linewidth Cr:ZnSe laser pumped by thuilium-doped fiber laser. Chin. J. Lasers, 44, 0201014(2017).

    Milun Zhang, Changwen Xu, Yidan Wei, Suliao Li, Guoyang Liu, Wenlong Li, Dianyuan Fan, "Continuous-wave and broadly tunable Cr:ZnSe laser pumped by a short wavelength Tm:YLF bulk laser," Chin. Opt. Lett. 22, 101404 (2024)
    Download Citation