[1] F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).
[2] V.M. Ho, J.A. Lee, K.C. Martin, The cell biology of synaptic plasticity. Science 333, 623 (2011).
[3] K. Liang, R. Wang, B. Huo, H. Ren, D. Li et al., Fully printed optoelectronic synaptic transistors based on quantum dot-metal oxide semiconductor heterojunctions. ACS Nano 16, 8651–8661 (2022).
[4] N. Ilyas, J. Wang, C. Li, D. Li, H. Fu et al., Nanostructured materials and architectures for advanced optoelectronic synaptic devices. Adv. Funct. Mater. 32, 2110976 (2022).
[5] X. Han, Z. Xu, W. Wu, X. Liu, P. Yan et al., Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct. 1, 2000029 (2020).
[6] K. Zhu, S. Pazos, F. Aguirre, Y. Shen, Y. Yuan et al., Hybrid 2D-CMOS microchips for memristive applications. Nature 618, 57–62 (2023).
[7] Y. Zheng, H. Ravichandran, T.F. Schranghamer, N. Trainor, J.M. Redwing et al., Hardware implementation of Bayesian network based on two-dimensional memtransistors. Nat. Commun. 13, 5578 (2022).
[8] L. Mennel, J. Symonowicz, S. Wachter, D.K. Polyushkin, A.J. Molina-Mendoza et al., Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).
[9] Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu et al., All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).
[10] L. Sun, Z. Wang, J. Jiang, Y. Kim, B. Joo et al., In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021).
[11] V.L. Feigin, A.A. Abajobir, K.H. Abate, F. Abd-Allah, A.M. Abdulle, Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet Neurol. 16, 877–897 (2017).
[12] H. Li, F. Tian, J. Yang, M. Sawan, N. El-Atab, NMBNN: noise-adaptive memristive Bayesian neural network for energy-efficient edge health care. 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS). Toronto, ON, Canada. IEEE, (2023)., pp. 1–5.
[13] H. Li, J. Wang, S. Zhao, F. Tian, J. Yang et al., Real-time biosignal recording and machine-learning analysis system. in 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS). Incheon, Republic of Korea, IEEE, (2022). pp. 427–430.
[14] A.Y. Hannun, P. Rajpurkar, M. Haghpanahi, G.H. Tison, C. Bourn et al., Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25, 65–69 (2019).
[15] J. L. Kuo, H. W. Chen, E. R. Hsieh, S. S. Chung, T. P. Chen, et al., Electronics for Radiation Detection. in 2018 IEEE Symposium on VLSI Technology, IEEE, Honolulu, HI, USA, June 2018.
[16] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang et al., A neuromorphic visual system using RRAM synaptic devices with Sub-pJ energy and tolerance to variability: Experimental characterization and large-scale modeling. in 2012 International Electron Devices Meeting. San Francisco, CA, USA. IEEE, (2012). pp. 10.4.1–10.4.4
[17] W. Choi, M. Kwak, S. Heo, K. Lee, S. Lee et al., Hardware neural network using hybrid synapses via transfer learning: WOx nano-resistors and TiOx RRAM synapse for energy-efficient edge-AI sensor. in 2021 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. IEEE, (2021). pp. 23.1.1–23.1.4
[18] C.-S. Poon, K. Zhou, Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities. Front. Neurosci. 5, 108 (2011).
[19] K.C. Eldred, S.E. Hadyniak, K.A. Hussey, B. Brenerman, P.W. Zhang et al., Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science 362, eaau6348 (2018).
[20] Q.-B. Zhu, B. Li, D.-D. Yang, C. Liu, S. Feng et al., A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 12, 1798 (2021).
[21] D. Kumar, H. Li, U.K. Das, A.M. Syed, N. El-Atab, Flexible solution-processable black-phosphorus-based optoelectronic memristive synapses for neuromorphic computing and artificial visual perception applications. Adv. Mater. 35, e2300446 (2023).
[22] C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang et al., Artificial sensory memory. Adv. Mater. 32, 1902434 (2020).
[23] H. Jang, C. Liu, H. Hinton, M.-H. Lee, H. Kim et al., An atomically thin optoelectronic machine vision processor. Adv. Mater. 32, 2002431 (2020).
[24] L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).
[25] G.J. Lee, C. Choi, D.-H. Kim, Y.M. Song, Artificial eyes: bioinspired artificial eyes: optic components, digital cameras, and visual prostheses. Adv. Funct. Mater. 28, 1870168 (2018).
[26] Y.M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung et al., Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013).
[27] D. Kumar, L. Joharji, H. Li, A. Rezk, A. Nayfeh et al., Artificial visual perception neural system using a solution-processable MoS2-based in-memory light sensor. Light Sci. Appl. 12, 109 (2023).
[28] S. Chen, A. Bermak, Arbitrated time-to-first spike CMOS image sensor with on-chip histogram equalization. IEEE Trans. Very Large Scale Integr. VLSI Syst. 15, 346–357 (2007).
[29] Y.L. Cun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015).
[30] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang et al., A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 25, 1774–1779 (2013).
[31] Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30, 1802883 (2018).
[32] F. Zhou, Z. Zhou, J. Chen, T.H. Choy, J. Wang et al., Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14, 776–782 (2019).
[33] S. Wang, C.-Y. Wang, P. Wang, C. Wang, Z.-A. Li et al., Networking retinomorphic sensor with memristive crossbar for brain-inspired visual perception. Natl. Sci. Rev. 8, nwaa172 (2020).
[34] H. Tan, G. Liu, X. Zhu, H. Yang, B. Chen et al., An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions. Adv. Mater. 27, 2797–2803 (2015).
[35] T. Leydecker, M. Herder, E. Pavlica, G. Bratina, S. Hecht et al., Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol. 11, 769–775 (2016).
[36] P. Russo, M. Xiao, R. Liang, N.Y. Zhou, UV-induced multilevel current amplification memory effect in zinc oxide rods resistive switching devices. Adv. Funct. Mater. 28, 1706230 (2018).
[37] H. Lee, W. Manorotkul, J. Lee, J. Kwon, Y.D. Suh et al., Nanowire-on-nanowire: all-nanowire electronics by on-demand selective integration of hierarchical heterogeneous nanowires. ACS Nano 11, 12311–12317 (2017).
[38] Z. Zhou, Y. Pei, J. Zhao, G. Fu, X. Yan, Visible light responsive optoelectronic memristor device based on CeOx/ZnO structure for artificial vision system. Appl. Phys. Lett. 118, 191103 (2021).
[39] Y. Chen, S. Zhu, Q. Wei, Y. Xia, A. Li et al., Light-controlled stateful logic operations using optoelectronic switches based on p-Si/HfO2 heterostructures. Appl. Phys. Lett. 112, 063503 (2018).
[40] M.M. Shulaker, T.F. Wu, M.M. Sabry, Wei H., H.-S. Philip Wong et al., Monolithic 3D integration: a path from concept to reality design, automation & test in europe conference & exhibition (DATE), 2015. March 9–13, 2015. Grenoble, France. New Jersey: IEEE Conference Publications, (2015).
[41] M. Patel, D.D. Kumbhar, J. Gosai, M.R. Sekhar, A.T. Mallajosyula et al., Hybrid perovskite-based flexible and stable memristor by complete solution process for neuromorphic computing. Adv. Electron. Mater. 9, 2200908 (2023).
[42] A. Liang, J. Zhang, F. Wang, Y. Jiang, K. Hu et al., Transparent HfO x-based memristor with robust flexibility and synapse characteristics by interfacial control of oxygen vacancies movement. Nanotechnology 32, 145202 (2021).
[43] S. Biswas, A.D. Paul, P. Das, P. Tiwary, H.J. Edwards et al., Impact of AlOy interfacial layer on resistive switching performance of flexible HfOₓ/AlOy ReRAMs. IEEE Trans. Electron Devices 68, 3787–3793 (2021).
[44] R. Zhang, H. Huang, Q. Xia, C. Ye, X. Wei et al., Role of oxygen vacancies at the TiO2/HfO2 interface in flexible oxide-based resistive switching memory. Adv. Electron. Mater. 5, 1800833 (2019).
[45] Y. Wang, M. Cao, J. Bian, Q. Li, J. Su, Flexible ZnO nanosheet-based artificial synapses prepared by low-temperature process for high recognition accuracy neuromorphic computing. Adv. Funct. Mater. 32, 2209907 (2022).
[46] P.-X. Chen, D. Panda, T.-Y. Tseng, All oxide based flexible multi-folded invisible synapse as vision photo-receptor. Sci. Rep. 13, 1454 (2023).
[47] S. Zhu, B. Sun, G. Zhou, T. Guo, C. Ke et al., In-depth physical mechanism analysis and wearable applications of HfO x-based flexible memristors. ACS Appl. Mater. Interfaces 15, 5420–5431 (2023).
[48] P. Pal, K.-J. Lee, S. Thunder, S. De, P.-T. Huang et al., Bending resistant multibit memristor for flexible precision inference engine application. IEEE Trans. Electron Devices 69, 4737–4743 (2022).
[49] S. Kim, Y. Abbas, Y.R. Jeon, A.S. Sokolov, B. Ku et al., Engineering synaptic characteristics of TaOx/HfO2 bi-layered resistive switching device. Nanotechnology 29, 415204 (2018).
[50] Y. Sun, J. Wang, D. He, M. Yang, C. Jiang et al., Enhanced resistive switching uniformity in HfO2/TiO2 NWA memristor for synaptic simulation. Appl. Phys. Lett. 122, 133501 (2023).
[51] Y. Yang, X. Zhu, Z. Ma, H. Hu, T. Chen et al., Artificial HfO2/TiOx synapses with controllable memory window and high uniformity for brain-inspired computing. Nanomaterials 13, 605 (2023).
[52] A. Saleem, D. Kumar, A. Singh, S. Rajasekaran, T.-Y. Tseng, Oxygen vacancy transition in HfOx-based flexible, robust, and synaptic Bi-layer memristor for neuromorphic and wearable applications. Adv. Mater. Technol. 7, 2101208 (2022).
[53] S. Chandrasekaran, F.M. Simanjuntak, D. Panda, T.-Y. Tseng, Enhanced synaptic linearity in ZnO-based invisible memristive synapse by introducing double pulsing scheme. IEEE Trans. Electron Devices 66, 4722–4726 (2019).
[54] M. Kumar, S. Abbas, J. Kim, All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl. Mater. Interfaces 10, 34370–34376 (2018).
[55] D.-C. Hu, R. Yang, L. Jiang, X. Guo, Memristive synapses with photoelectric plasticity realized in ZnO1–x/AlOy heterojunction. ACS Appl. Mater. Interfaces 10, 6463–6470 (2018).
[56] X. Shan, C. Zhao, Y. Lin, J. Liu, X. Zhang et al., Optoelectronic synaptic device based on ZnO/HfOx heterojunction for high-performance neuromorphic vision system. Appl. Phys. Lett. 121, 263501 (2022).
[57] C.-L. Hsu, A. Saleem, A. Singh, D. Kumar, T.-Y. Tseng, Enhanced linearity in CBRAM synapse by post oxide deposition annealing for neuromorphic computing applications. IEEE Trans. Electron Devices 68, 5578–5584 (2021).
[58] H. Jiang, L. Han, P. Lin, Z. Wang, M.H. Jang et al., Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci. Rep. 6, 28525 (2016).
[59] L. Liu, W. Xiong, Y. Liu, K. Chen, Z. Xu et al., Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications. Adv. Electron. Mater. 6, 1901012 (2020).
[60] P.S. Subin, P.S. Midhun, A. Antony, K.J. Saji, M.K. Jayaraj, Optoelectronic synaptic plasticity mimicked in ZnO-based artificial synapse for neuromorphic image sensing application. Mater. Today Commun. 33, 104232 (2022).
[61] W. Zhang, Z. Guo, Y. Dai, J. Lei, J. Wang et al., Effects of stacking sequence and top electrode configuration on switching behaviors in ZnO-HfO2 hybrid resistive memories. Ceram. Int. 49, 35973–35981 (2023).
[62] N. Jain, S.K. Sharma, R. Kumawat, P.K. Jain, D. Kumar et al., Resistive switching, endurance and retention properties of ZnO/HfO2 bilayer heterostructure memory device. Micro Nanostruct. 169, 207366 (2022).
[63] M. Noh, D. Ju, S. Cho, S. Kim, The enhanced performance of neuromorphic computing hardware in an ITO/ZnO/HfOx/W bilayer-structured memory device. Nanomaterials 13, 2856 (2023).
[64] L. Ma, G. Wang, S. Wang, D. Chen, Simulation of In-situ training in spike neural network based on non-ideal memristors. IEEE J. Electron Devices Soc. 11, 497–502 (2023).
[65] S. Shrivastava, L.B. Keong, S. Pratik, A.S. Lin, T.-Y. Tseng, Fully photon controlled synaptic memristor for neuro-inspired computing. Adv. Electron. Mater. 9, 2201093 (2023).
[66] D. Kumar, L.B. Keong, N. El-Atab, T.-Y. Tseng, Enhanced synaptic features of ZnO/TaOx bilayer invisible memristor for brain-inspired computing. IEEE Electron Device Lett. 43, 2093–2096 (2022).
[67] J. Meng, T. Wang, H. Zhu, L. Ji, W. Bao et al., Integrated In-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 22, 81–89 (2022).
[68] R.A. John, F. Liu, N.A. Chien, M.R. Kulkarni, C. Zhu et al., Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: coexistence of hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 30, e1800220 (2018).
[69] Y. Wang, G. Zhou, B. Sun, W. Wang, J. Li et al., Ag/HfOx/Pt unipolar memristor for high-efficiency logic operation. J. Phys. Chem. Lett. 13, 8019–8025 (2022).
[70] D. Kumar, P.S. Kalaga, D.S. Ang, Visible light detection and memory capabilities in MgO/HfO₂ bilayer-based transparent structure for photograph sensing. IEEE Trans. Electron Devices 67, 4274–4280 (2020).
[71] D. Kumar, S. Shrivastava, A. Saleem, A. Singh, H. Lee et al., Highly efficient invisible TaOx/ZTO bilayer memristor for neuromorphic computing and image sensing. ACS Appl. Electron. Mater. 4, 2180–2190 (2022).
[72] S.D. Baek, P. Biswas, J.W. Kim, Y.C. Kim, T.I. Lee et al., Low-temperature facile synthesis of Sb-doped p-type ZnO nanodisks and its application in homojunction light-emitting diode. ACS Appl. Mater. Interfaces 8, 13018–13026 (2016).
[73] J.B. Roldán, E. Miranda, D. Maldonado, A.N. Mikhaylov, N.V. Agudov et al., Variability in resistive memories. Adv. Intell. Syst. 5, 2200338 (2023).
[74] J. Yang, A. Yoon, D. Lee, S. Song, I.J. Jung et al., Wafer-scale memristor array based on aligned grain boundaries of 2D molybdenum ditelluride for application to artificial synapses. Adv. Funct. Mater. 34, 2309455 (2024).
[75] M. Lanza, F. Hui, C. Wen, A.C. Ferrari, Resistive switching crossbar arrays based on layered materials. Adv. Mater. 35, e2205402 (2023).
[76] M. Lanza, R. Waser, D. Ielmini, J.J. Yang, L. Goux et al., Standards for the characterization of endurance in resistive switching devices. ACS Nano 15, 17214–17231 (2021).
[77] Z. Ma, J. Ge, W. Chen, X. Cao, S. Diao et al., Reliable memristor based on ultrathin native silicon oxide. ACS Appl. Mater. Interfaces 14, 21207–21216 (2022).
[78] C. Yang, B. Sun, G. Zhou, T. Guo, C. Ke et al., Photoelectric memristor-based machine vision for artificial intelligence applications. ACS Mater. Lett. 5, 504–526 (2023).
[79] R.C. Atkinson, R.M. Shiffrin, Human memory: a proposed system and its control processes, in Psychology of Learning and Motivation. (Elsevier, Amsterdam, 1968), pp.89–195.