• Photonics Research
  • Vol. 12, Issue 5, A41 (2024)
Bitao Shen1, Xuguang Zhang1, Yimeng Wang1, Zihan Tao1..., Haowen Shu1,2,5, Huajin Chang1, Wencan Li1, Yan Zhou3, Zhangfeng Ge3, Ruixuan Chen1, Bowen Bai1, Lin Chang1,4,6 and Xingjun Wang1,2,3,4,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing 100871, China
  • 2Peng Cheng Laboratory, Shenzhen 518055, China
  • 3Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
  • 4Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
  • 5e-mail: haowenshu@pku.edu.cn
  • 6e-mail: linchang@pku.edu.cn
  • show less
    DOI: 10.1364/PRJ.511627 Cite this Article Set citation alerts
    Bitao Shen, Xuguang Zhang, Yimeng Wang, Zihan Tao, Haowen Shu, Huajin Chang, Wencan Li, Yan Zhou, Zhangfeng Ge, Ruixuan Chen, Bowen Bai, Lin Chang, Xingjun Wang, "Reliable intracavity reflection for self-injection locking lasers and microcomb generation," Photonics Res. 12, A41 (2024) Copy Citation Text show less
    References

    [1] K. Kikuchi. Fundamentals of coherent optical fiber communications. J. Lightwave Technol., 34, 157-179(2015).

    [2] S. L. Olsson, J. Cho, S. Chandrasekhar. Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection. Opt. Express, 26, 4522-4530(2018).

    [3] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [4] J. Yao, J. Capmany. Microwave photonics. Sci. China Inf. Sci., 65, 221401(2022).

    [5] Z. Tao, Y. Tao, M. Jin. Highly reconfigurable silicon integrated microwave photonic filter towards next-generation wireless communication. Photonics Res., 11, 682-694(2023).

    [6] Z. L. Newman, V. Maurice, T. Drake. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [7] W. Loh, J. Stuart, D. Reens. Operation of an optical atomic clock with a Brillouin laser subsystem. Nature, 588, 244-249(2020).

    [8] G. Lihachev, J. Riemensberger, W. Weng. Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat. Commun., 13, 3522(2022).

    [9] R. Chen, H. Shu, B. Shen. Breaking the temporal and frequency congestion of lidar by parallel chaos. Nat. Photonics, 17, 306-314(2023).

    [10] Y.-H. Lai, M.-G. Suh, Y.-K. Lu. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photonics, 14, 345-349(2020).

    [11] M.-G. Suh, Q.-F. Yang, K. Y. Yang. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [12] B. Dahmani, L. Hollberg, R. Drullinger. Frequency stabilization of semiconductor lasers by resonant optical feedback. Opt. Lett., 12, 876-878(1987).

    [13] W. Liang, V. Ilchenko, D. Eliyahu. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun., 6, 7371(2015).

    [14] C. Xiang, W. Jin, O. Terra. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature, 620, 78-85(2023).

    [15] Z. Ye, H. Jia, Z. Huang. Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits. Photonics Res., 11, 558-568(2023).

    [16] M. W. Puckett, K. Liu, N. Chauhan. 422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun., 12, 934(2021).

    [17] M. A. Tran, C. Zhang, T. J. Morin. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature, 610, 54-60(2022).

    [18] C. Xiang, J. Liu, J. Guo. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).

    [19] H. Shu, L. Chang, Y. Tao. Microcomb-driven silicon photonic systems. Nature, 605, 457-463(2022).

    [20] J. Liu, G. Huang, R. N. Wang. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 12, 2236(2021).

    [21] A. E. Shitikov, I. I. Lykov, O. V. Benderov. Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator: experimental study. Opt. Express, 31, 313-327(2023).

    [22] R. R. Galiev, N. M. Kondratiev, V. E. Lobanov. Mirror-assisted self-injection locking of a laser to a whispering-gallery-mode microresonator. Phys. Rev. Appl., 16, 064043(2021).

    [23] Q. Su, F. Wei, C. Chen. A self-injection locked laser based on high-Q micro-ring resonator with adjustable feedback. J. Lightwave Technol., 41, 6756-6763(2023).

    [24] N. Kondratiev, V. Lobanov, A. Cherenkov. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express, 25, 28167-28178(2017).

    [25] W. Jin, Q.-F. Yang, L. Chang. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).

    [26] B. Shen, L. Chang, J. Liu. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020).

    [27] A. S. Voloshin, N. M. Kondratiev, G. V. Lihachev. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun., 12, 235(2021).

    [28] G. Lihachev, W. Weng, J. Liu. Platicon microcomb generation using laser self-injection locking. Nat. Commun., 13, 1771(2022).

    [29] H. Wang, B. Shen, Y. Yu. Self-regulating soliton switching waves in microresonators. Phys. Rev. A, 106, 053508(2022).

    [30] M. L. Gorodetsky, A. D. Pryamikov, V. S. Ilchenko. Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B, 17, 1051-1057(2000).

    [31] M. Corato-Zanarella, A. Gil-Molina, X. Ji. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photonics, 17, 157-164(2023).

    [32] L. Tang, H. Jia, S. Shao. Hybrid integrated low-noise linear chirp frequency-modulated continuous-wave laser source based on self-injection to an external cavity. Photonics Res., 9, 1948-1957(2021).

    [33] J. Li, B. Zhang, S. Yang. Robust hybrid laser linewidth reduction using Si3N4-based subwavelength hole defect assisted microring reflector. Photonics Res., 9, 558-566(2021).

    [34] G. Zhang, Q. Cen, T. Hao. Self-injection locked silica external cavity narrow linewidth laser. J. Lightwave Technol., 41, 2474-2483(2023).

    [35] A. Arbabi, Y. M. Kang, C.-Y. Lu. Realization of a narrowband single wavelength microring mirror. Appl. Phys. Lett., 99, 091105(2011).

    [36] A. E. Ulanov, T. Wildi, N. G. Pavlov. Synthetic reflection self-injection-locked microcombs. Nat. Photonics, 18, 294-299(2024).

    [37] H. Arianfard, S. Juodkazis, D. J. Moss. Sagnac interference in integrated photonics. Appl. Phys. Rev., 10, 011309(2023).

    [38] X. Jiang, J. Wang, C. Gao. All-optical NRZ wavelength conversion using a Sagnac loop with optimized SOA characteristics. J. Semicond., 36, 014013(2015).

    [39] C. Vázquez, S. E. Vargas, J. M. S. Pena. Sagnac loop in ring resonators for tunable optical filters. J. Lightwave Technol., 23, 2555-2567(2005).

    [40] J. Zang, S.-P. Yu, D. R. Carlson. Kerr comb generation in normal-dispersion, bi-directionally coupled microresonators. Conference on Lasers and Electro-Optics (CLEO), 1-2(2023).

    [41] T. Kippenberg, S. Spillane, K. Vahala. Modal coupling in traveling-wave resonators. Opt. Lett., 27, 1669-1671(2002).

    [42] X. Ji, J. Liu, J. He. Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits. Commun. Phys., 5, 84(2022).

    [43] N. M. Kondratiev, V. E. Lobanov. Modulational instability and frequency combs in whispering-gallery-mode microresonators with backscattering. Phys. Rev. A, 101, 013816(2020).

    [44] R. R. Galiev, N. M. Kondratiev, V. E. Lobanov. Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator. Phys. Rev. Appl., 14, 014036(2020).

    [45] P. Parra-Rivas, E. Knobloch, D. Gomila. Dark solitons in the Lugiato-Lefever equation with normal dispersion. Phys. Rev. A, 93, 063839(2016).

    [46] F. Lei, Z. Ye, Ó. B. Helgason. Optical linewidth of soliton microcombs. Nat. Commun., 13, 3161(2022).

    [47] L. Tang, L. Li, J. Li. Hybrid integrated ultralow-linewidth and fast-chirped laser for FMCW lidar. Opt. Express, 30, 30420-30429(2022).

    [48] Y. Li, Y. Zhang, H. Chen. Tunable self-injected Fabry–Perot laser diode coupled to an external high-Q Si3N4/SiO2 microring resonator. J. Lightwave Technol., 36, 3269-3274(2018).

    [49] C. Xiang, J. Guo, W. Jin. High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun., 12, 6650(2021).

    [50] Y. Fan, A. van Rees, P. J. Van der Slot. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express, 28, 21713-21728(2020).

    [51] Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen. 290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser. Conference on Lasers and Electro-Optics (CLEO), 1-2(2017).

    [52] B. Stern, X. Ji, A. Dutt. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett., 42, 4541-4544(2017).

    [53] B. Stern, X. Ji, Y. Okawachi. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [54] C. Xiang, W. Jin, J. E. Bowers. Silicon nitride passive and active photonic integrated circuits: trends and prospects. Photonics Res., 10, A82-A96(2022).

    [55] H. Wang, L. Wu, Z. Yuan. Towards milli-hertz laser frequency noise on a chip. Conference on Lasers and Electro-Optics (CLEO), 1-2(2020).

    Bitao Shen, Xuguang Zhang, Yimeng Wang, Zihan Tao, Haowen Shu, Huajin Chang, Wencan Li, Yan Zhou, Zhangfeng Ge, Ruixuan Chen, Bowen Bai, Lin Chang, Xingjun Wang, "Reliable intracavity reflection for self-injection locking lasers and microcomb generation," Photonics Res. 12, A41 (2024)
    Download Citation