
- Photonics Research
- Vol. 9, Issue 10, 1939 (2021)
Abstract
1. INTRODUCTION
Polarization is an important variable of electromagnetic waves, typical types of which include linear, circular, and elliptical ones. From the perspective of electromagnetic field, it refers to the trajectory of the electric field vibration, and from the perspective of the photons, it (circular polarization) can also be related to the spin angular momentum [1,2]. Therefore, polarization of light has been widely studied and applied in imaging, quantum optics, and other fields, and polarization manipulation has become an important research content of modern optics and photonics [3–5]. Traditional optical devices based on bulk crystals are used for polarization generation or conversion, such as polarizers and wave plates. The wave plate is based on the linear birefringence effect of the optical crystal, which produces a phase shift between the ordinary and the extraordinary components with an appropriate thickness, and then superimposes them into a new polarization. Such devices are large in size and require high processing accuracy, while only specific materials can be used in each electromagnetic band [6]. More importantly, these devices can hardly realize the simultaneous control of other optical parameters while performing polarization conversion, such as amplitude and phase. This is not conducive to the multi-functional and integrated development of modern optical devices.
Electromagnetic metasurfaces are planar functional devices composed of artificially designed sub-wavelength meta-atoms [7–10]. After more than 10 years of rapid development, significant progress of them has been made in the fields of information optics [11,12], quantum optics [4,5], non-linear optics, and terahertz photonics [13–17]. Electromagnetic functional devices based on metasurfaces are flexible in design and conducive for integration. They not only provide new ideas for the development of new optical devices, but also provide powerful tools for many basic physics researches [18–20]. In particular, metasurfaces also achieve optical linear birefringence and polarization conversion. Different from the material birefringence of traditional optical devices, the meta-atoms in metasurface utilize the shape birefringence [21], which has been realized from microwave to ultraviolet bands using a dielectric or metal [22,23]. For shape-induced linear birefringence, when the incident polarization is consistent with the symmetry axis of the anisotropic meta-atom, the output polarization state remains unchanged, and the incident polarization state is called the eigen-polarization state. When the other linearly polarized wave is incident, its projection in the eigen-polarization state will cause polarization transformation [21], and the output polarization state can be designed by changing the geometric parameters of the structure. The advantage of shape birefringence is that the working frequency can be designed, and other functions can be achieved with polarization conversion, such as non-linear effect [10], wavefront shaping [5,24,25], and polarization-dependent beam energy distribution [26,27]. In particular, researchers set the appropriate geometric dimensions to make the linear polarization conversion efficiency of the meta-atoms be about 50%, controlled the phase difference between the co- and cross-polarized components, and then obtained beam shaping with designed polarization [28–30]. This method is similar to the principle of a quarter-wave plate and can realize the polarization conversion with a simple structure, but the transformation channels are non-independent due to the symmetry of the meta-atoms. It is difficult to achieve independent polarization conversion between different channels. In addition to the linear polarization-based approach, the circular polarization-based one has also been reported, that is, the phase manipulation method of spin decoupling which combines geometric and dynamic phases, while the cross- and co-polarizations can be controlled at the same time [31–33]. However, the optical response of each unit needs to meet several conditions at the same time, which means that their design process is complicated. Therefore, metadevices for polarization conversion with a simple design and two or more independent channels are very necessary.
Here, we propose a new method for terahertz beam shaping with multiple polarization conversion channels. Two sets of spatially interleaved anisotropic units are used to obtain the linearly co- and cross-polarized components, which are superimposed to obtain a new polarization state in beam shaping. We take the focused beam as an example to improve the signal-to-noise ratio (SNR) of the measurement for terahertz electric field. We use two samples to demonstrate the high-efficiency, broadband polarization conversion and the multi-channel function brought about by the incident polarization and the sub-arrays. This method is not only suitable for design of linear polarization-based metasurfaces, but also can be extended to circular polarization-based devices.
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
2. RESULTS AND DISCUSSION
The proposed scheme of beam shaping with polarization conversion is shown in Fig. 1, in which Fig. 1(a) is a schematic diagram of the metasurface. We take the incidence of two orthogonal linear polarization states as an example (such as
Figure 1.Schematic diagram of the metasurface for beam shaping with dual-channel polarization conversion. (a) Taking the orthogonal linearly polarized terahertz waves as an example, a 45° polarized (
Here, we make a brief theoretical analysis of the working principle for the metasurface in Fig. 1. Without loss of generality, we consider the condition of
When the
Similarly, when the
In order to obtain the above-mentioned metasurface, we use commercial numerical simulation software to obtain parameter libraries of the two kinds of meta-atoms. We choose high-resistance silicon as the constituent material, and process meta-atoms directly on the silicon wafer. High-resistance silicon (
Figure 2.Amplitudes and phases of the transmitted wave corresponding to meta-atoms with selected geometric parameters. (a) Geometric shape of the two kinds of meta-atoms. Amplitude and phase values for the (b) second and (c)–(f) first types of meta-atoms.
By scanning the parameters of the two structures (the original data can be seen in Appendix B, Fig. 6, the working frequency is
Based on the above parameter library, we design two metasurfaces to verify the beam shaping with polarization conversion. The samples are processed from a 500 μm thick high-resistance silicon through inductively coupled plasma (ICP) etching technology. Each sample is a square with a side length of 1.4 cm. The specific processing steps can be seen in Appendix A. The scanning electron microscope (SEM) images of the first metasurface are shown in Fig. 3(a), which is called sample 1. Its effective area is a circular array composed of the two kinds of meta-atoms mentioned above. There are 80 units (1.12 cm) of each kind in the radial direction. It can be seen from the figure that the sidewalls of the meta-atoms are very steep, which means the processing error is not obvious. In order to illustrate the polarization conversion function of sample 1 intuitively, we use Poincaré spheres to show the incident and transmission polarization states, which are denoted by
Figure 3.Simulated and experimental results of sample 1 for the generation of focused vortex beam with polarization conversion. (a) SEM images of sample 1. (b) Demonstration of dual-channel polarization conversion on the Poincaré sphere. (c) Electric field intensity of the transmitted wave in the focal plane when the
It can be seen that the conversion efficiency at the design frequency of 1.1 THz is up to 89.2%, and it is greater than 60% in the entire survey frequency band. The simulated results show that the efficiency is higher than 80% in the range of 0.8–1.3 THz, with a peak value of 93.8% at 1.1 THz. The measured values are slightly smaller than the simulated ones; after all, there are some noise signals in the edge area of the focal plane in the measurement results.
In fact, we can obtain more channels in one metasurface via area division of the sample, which means designing different phase distributions in different areas [30]. For simplicity, we only consider the condition of dividing the effective area into two sub-arrays. When the
Figure 4.Simulated and experimental results of sample 2 for the generation of focused vortex beam with polarization conversion. (a) SEM image and optical photo of sample 2. (b) Demonstration of the dual-channel polarization conversion on the Poincaré sphere. (c) Electric field intensity of the transmitted wave when the
Generally, in the case where linearly polarized waves are incident, all the polarization states we get are derived from the superposition of orthogonal linearly polarized components transmitted by the two types of meta-atoms. With different phase shifts, various states such as linear, elliptical, or circular polarization can be obtained. In particular, when the
Figure 5.General discussions on the available polarization states. (a), (b) The possible polarization realization of the transmitted wave when the linearly polarized wave is incident. (c) Transmitted electric field intensities under circularly polarized wave illumination.
3. CONCLUSION
In summary, we propose a new method for terahertz beam shaping with multi-channel polarization conversion based on all-silicon metasurfaces. We alternately arrange two kinds of meta-atoms in a single metasurface, eigen-polarizations of which are
APPENDIX A: EXPERIMENTAL SECTION
Numerical simulations: We simulate the meta-atoms and whole samples using the commercial software CST MICROWAVE STUDIO (2019, time domain solver). We first calculate the transmission amplitudes and phases of the units with different geometric dimensions. At this time, both
Experimental setup: We measure the electric field intensity and phase distributions of the focused terahertz beam (Figs.
Sample fabrication: Ultraviolet lithography and ICP etching are used to process the samples. We use standard photolithography to form a 6.8 μm thick patterned positive photoresist (AZ4620) as a mask on a 500 μm thick silicon wafer with a diameter of 4 inch (1 inch = 2.54 cm). Then we use (ICP) etching technology (STS MULTIPLEX ASE-HRM ICP ETCHER, United Kingdom) to etch the sample, and finally the remaining photoresist is washed away to get the final sample. The etching depth is about 200 μm, and the remaining 300 μm thick silicon layer is used as the substrate.
APPENDIX B: GEOMETRIC SIZE SELECTION OF THE META-ATOMS
In order to obtain the parameter library of the two types of meta-atoms, we simulated the amplitudes and phases of the transmitted wave with their lateral dimensions as variables (the height of the silicon pillar is 200 μm, and thickness of the substrate is 300 μm). The results are shown in Fig.
Figure 6.Transmission amplitudes and phases of the meta-atoms with different geometric sizes.
APPENDIX C: PHASE DISTRIBUTION FUNCTIONS OF SAMPLE 2
As mentioned in the paper, the effective area of sample 2 is divided into two sub-arrays, in which the phase distribution functions of the two types of meta-atoms in the left half (
In order to show the near-field phase distributions of the metasurface more intuitively, we draw the phase profile of the two samples according to Eqs. (
Figure 7.Near-field phase distributions of the two samples.
Figure 8.Phase distributions in the focal plane of the generated vortex beam from sample 1.
Figure 9.THz imaging system based on two-dimensional electro-optical sampling.
APPENDIX D: TERAHERTZ IMAGING SYSTEM
We measure the electric field intensity and phase distributions of the focused terahertz beam (Figs.
APPENDIX E: MEASUREMENT OF THE POLARIZATION CONVERSION FOR TERAHERTZ WAVE
The imaging system we use can only generate a linearly polarized terahertz beam in the pump module, while the probe module can measure the linearly co- and cross-polarized components. Therefore, the transmitted circularly polarized wave can be obtained if we superimpose the measured
For the condition where the circularly polarized wave is incident in sample 2, after measuring four linear polarization components, circularly polarized components in the transmitted beam can be obtained according to the following formula, and then the final polarization state can be judged:
References
[1] M. Onoda, S. Murakami, N. Nagaosa. Hall effect of light. Phys. Rev. Lett., 93, 083901(2004).
[2] O. Hosten, P. Kwiat. Observation of the spin Hall effect of light via weak measurements. Science, 319, 787-790(2008).
[3] W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat. Med., 5, 1209-1212(1999).
[4] T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, M. Segev. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science, 361, 1101-1104(2018).
[5] R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, F. Capasso. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896-901(2017).
[6] D. Goldstein. Polarized Light(2010).
[7] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).
[8] Q. Zhao, J. Zhou, F. Zhang, D. Lippens. Mie resonance-based dielectric metamaterials. Mater. Today, 12, 60-69(2009).
[9] S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426-431(2012).
[10] Y. Yu, A. Y. Zhu, R. Paniagua, Y. Fu, B. Luk’yanchuk, A. I. Kuznetsov. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photonics Rev., 9, 412-418(2015).
[11] F. Zangeneh-Nejad, D. L. Sounas, A. Alù, R. Fleury. Analogue computing with metamaterials. Nat. Rev. Mater., 6, 207-225(2021).
[12] Y. Zhou, H. Zheng, I. I. Kravchenko, J. Valentine. Flat optics for image differentiation. Nat. Photonics, 14, 1-2(2020).
[13] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).
[14] S. Chen, G. Li, K. W. Cheah, T. Zentgraf, S. Zhang. Controlling the phase of optical nonlinearity with plasmonic metasurfaces. Nanophotonics, 7, 1013-1024(2018).
[15] Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, W. Zhang. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci. Appl., 7, 25(2018).
[16] Z. Zhang, M. Kang, X. Zhang, X. Feng, Y. Xu, X. Chen, H. Zhang, Q. Xu, Z. Tian, W. Zhang, A. Krasnok, J. Han, A. Alù. Coherent perfect diffraction in metagratings. Adv. Mater., 32, 2002341(2020).
[17] Z. Wang, S. Li, X. Zhang, X. Feng, Q. Wang, J. Han, Q. He, W. Zhang, S. Sun, L. Zhou. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces. Adv. Sci., 7, 2000982(2020).
[18] J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, D. R. Smith. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater., 18, 668-678(2019).
[19] D. Neshev, I. Aharonovich. Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci. Appl., 7, 58(2018).
[20] D. Wang, F. Liu, T. Liu, S. Sun, Q. He, L. Zhou. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci. Appl., 10, 67(2021).
[21] Z. Shi, A. Y. Zhu, Z. Li, Y. Huang, W. Chen, C. W. Qiu, F. Capasso. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion. Sci. Adv., 6, eaba3367(2020).
[22] S. Wang, Z. Deng, Y. Wang, Q. Zhou, X. Wang, Y. Cao, B. Guan, S. Xiao, X. Li. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers. Light Sci. Appl., 10, 24(2021).
[23] Q. Fan, M. Liu, C. Zhang, W. Zhu, Y. Wang, P. Lin, F. Yan, L. Chen, H. J. Lezec, Y. Lu, A. Agrawal, T. Xu. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Phys. Rev. Lett., 125, 267402(2020).
[24] S. Gao, C. Park, C. Zhou, S. Lee, D. Choi. Twofold polarization-selective all-dielectric trifoci metalens for linearly polarized visible light. Adv. Opt. Mater., 7, 1900883(2019).
[25] J. Li, L. Zhang, M. Zhang, H. Su, I. L. Li, S. Ruan, H. Liang. Wearable conformal metasurfaces for polarization division multiplexing. Adv. Opt. Mater., 8, 2000068(2020).
[26] Y. Yuan, K. Zhang, B. Ratni, Q. Song, X. Ding, Q. Wu, S. N. Burokur, P. Genevet. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nat. Commun., 11, 4186(2020).
[27] Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, C. W. Qiu. A fully phase-modulated metasurface as an energy-controllable circular polarization router. Adv. Sci., 7, 2001437(2020).
[28] A. Pors, M. G. Nielsen, S. I. Bozhevolnyi. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica, 2, 716-723(2015).
[29] Y. Gao, X. Xiong, Z. Wang, F. Chen, R. Peng, M. Wang. Simultaneous generation of arbitrary assembly of polarization states with geometrical-scaling-induced phase modulation. Phys. Rev. X, 10, 031035(2020).
[30] F. Ding, B. Chang, Q. Wei, L. Huang, X. Guan, S. I. Bozhevolnyi. Versatile polarization generation and manipulation using dielectric metasurfaces. Laser Photonics Rev., 14, 2000116(2020).
[31] J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, F. Capasso. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).
[32] K. Zhang, Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, Q. Wu. High efficiency metalenses with switchable functionalities in microwave region. ACS Appl. Mater. Interfaces, 11, 28423-28430(2019).
[33] M. Liu, W. Zhu, P. Huo, L. Feng, M. Song, C. Zhang, L. Chen, H. J. Lezec, Y. Lu, A. Agrawal, T. Xu. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci. Appl., 10, 107(2021).
[34] H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, W. Zhang. High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation. Adv. Opt. Mater., 6, 1700773(2018).

Set citation alerts for the article
Please enter your email address