• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101007 (2022)
Hao Zhang1、2, Haitao Guo1、*, Yantao Xu1、2, Man Li3, and Wenchao Ma3
Author Affiliations
  • 1State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 710119, China
  • 2University of Chinese Academy of Sciences, Beijing 100045, China
  • 3Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
  • show less
    DOI: 10.3788/CJL202249.0101007 Cite this Article Set citation alerts
    Hao Zhang, Haitao Guo, Yantao Xu, Man Li, Wenchao Ma. Research Progress in Chalcogenide Glass Fibers for Infrared Laser Delivery[J]. Chinese Journal of Lasers, 2022, 49(1): 0101007 Copy Citation Text show less
    References

    [1] Borisova Z U[M]. Glassy semiconductors, 5-35(1981).

    [2] Dai S X, Wang M, Wang Y Y et al. Review of mid-infrared supercontinuum spectrum generation based on chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 57, 071603(2020).

    [3] Nguyen V Q, Sanghera J S, Pureza P et al. Fabrication of arsenic selenide optical fiber with low hydrogen impurities[J]. Journal of the American Ceramic Society, 85, 2849-2851(2004).

    [4] Kapany N S, Simms R J. Recent developments in infrared fiber optics[J]. Infrared Physics, 5, 69-80(1965).

    [5] Sanghera J S, Brandon Shaw L, Talley D B et al. IR fiber optics for biomedical applications[J]. Proceedings of SPIE, 3907, 461-467(2000).

    [6] Papagiakoumou E, Papadopoulos D N, Serafetinides A A. Pulsed infrared radiation transmission through chalcogenide glass fibers[J]. Optics Communications, 276, 80-86(2007).

    [7] Sanghera J S, Aggarwal I D. Active and passive chalcogenide glass optical fibers for IR applications: a review[J]. Journal of Non-Crystalline Solids, 256/257, 6-16(1999).

    [8] Sincore A, Cook J, Tan F et al. High power single-mode delivery of mid-infrared sources through chalcogenide fiber[J]. Optics Express, 26, 7313-7323(2018).

    [9] Watanabe S, Iwamoto N, Hattori T et al. 60-W CO laser power transmission through As-S glass fibers[C], FP6(1985).

    [10] Sato S, Igarashi K, Taniwaki M et al. Multihundred-watt CO laser power delivery through chalcogenide glass fibers[J]. Applied Physics Letters, 62, 669-671(1993).

    [11] Inagawa I, Yamagishi T, Yamashita T. Transmission-loss spectra of chalcohalide Se-Te-I glass fibers and its delivery of CO2Laser power[J]. Japanese Journal of Applied Physics, 30, 2846-2849(1991).

    [12] Nishii J, Morimoto S, Inagawa I et al. Recent advances and trends in chalcogenide glass fiber technology: a review[J]. Journal of Non-Crystalline Solids, 140, 199-208(1992).

    [13] Busse L E, Moon J A, Sanghera J S et al. Midinfrared power delivery through chalcogenide glass-clad optical fibers[J]. Proceedings of SPIE, 2714, 211-221(1996).

    [14] Su J X, Dai S X, Jiang L et al. Fabrication and bending strength analysis of low-loss Ge15As25Se40Te20 chalcogenide glass fiber: a potential mid-infrared laser transmission medium[J]. Optical Materials Express, 9, 2859-2869(2019).

    [15] Le Person J, Smektala F, Chartier T et al. Light guidance in new chalcogenide holey fibres from GeGaSbS glass[J]. Materials Research Bulletin, 41, 1303-1309(2006).

    [16] Troles J, Brilland L, Smektala F et al. Chalcogenide photonic crystal fibers for near and middle infrared applications[C], 297-300(2007).

    [17] Ren H, Qi S, Hu Y et al. All-solid mid-infrared chalcogenide photonic crystal fiber with ultralarge mode area[J]. Optics Letters, 44, 5553-5556(2019).

    [18] Feng X, Ren H, Xu F et al. Few-moded ultralarge mode area chalcogenide photonic crystal fiber for mid-infrared high power applications[J]. Optics Express, 28, 16658-16672(2020).

    [19] Duguay M A, Kokubun Y, Koch T L et al. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures[J]. Applied Physics Letters, 49, 13-15(1986).

    [20] Knight J C. Photonic crystal fibres[J]. Nature, 424, 847-851(2003).

    [21] Kolyadin A N, Kosolapov A F, Pryamikov A D et al. Light transmission in negative curvature hollow core fiber in extremely high material loss region[J]. Optics Express, 21, 9514-9519(2013).

    [22] Temelkuran B, Hart S D, Benoit G et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J]. Nature, 420, 650-653(2002).

    [23] Zhu M M, Wang X S, Pan Z H et al. Fabrication of an IR hollow-core Bragg fiber based on chalcogenide glass extrusion[J]. Applied Physics A, 119, 455-460(2015).

    [24] Hayashi J G, Mousavi S M A, Ventura A et al. Numerical modeling of a hybrid hollow-core fiber for enhanced mid-infrared guidance[J]. Optics Express, 29, 17042-17052(2021).

    [25] Désévédavy F, Renversez G, Troles J et al. Chalcogenide glass hollow core photonic crystal fibers[J]. Optical Materials, 32, 1532-1539(2010).

    [26] Jin W, Bao H H, Qi Y et al. Micro/nano-structured optical fiber laser spectroscopy[J]. Acta Optica Sinica, 41, 0130002(2021).

    [27] Zhang H J, Pan R, Ning D. Progress of mid-Infrared hollow core microstructure optical fiber[J]. Optical Communication Technology, 38, 21-23(2014).

    [28] Mangan B J, Farr L, Langford A et al. Low loss (1.7 dB/km) hollow core photonic bandgap fiber[C], 2, 1-3(2004).

    [29] Jasion G T, Bradley T D, Harrington K et al. Hollow core NANF with 0.28 dB/km attenuation in the C and L bands[C], 1-3(2020).

    [30] Michieletto M, Lyngsø J K, Jakobsen C et al. Hollow-core fibers for high power pulse delivery[J]. Optics Express, 24, 7103-7119(2016).

    [31] Uebel P, Günendi M C, Frosz M H et al. Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes[J]. Optics Letters, 41, 1961-1964(2016).

    [32] Debord B, Amsanpally A, Chafer M et al. Ultralow transmission loss in inhibited-coupling guiding hollow fibers[J]. Optica, 4, 209-217(2017).

    [33] Zhang J Q, Zhang M, Yin J D et al. Design of low loss hollow-core anti-resonance fiber for 3 μm spectral region[J]. Laser & Optoelectronics Progress, 58, 1723001(2021).

    [34] Litchinitser N M, Abeeluck A K, Headley C et al. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 27, 1592-1594(2002).

    [35] Ding W, Wang Y Y, Gao S F et al. Theoretical and experimental investigation of light guidance in hollow-core anti-resonant fiber[J]. Acta Physica Sinica, 67, 124201(2018).

    [36] Kosolapov A F, Pryamikov A D, Biriukov A S et al. Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core[J]. Optics Express, 19, 25723-25728(2011).

    [37] Shiryaev V S, Kosolapov A F, Pryamikov A D et al. Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers[J]. Journal of Optoelectronics and Advanced Materials, 16, 1020-1025(2014).

    [38] Gattass R R, Rhonehouse D, Gibson D et al. Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion[J]. Optics Express, 24, 25697-25703(2016).

    [39] Chenard F, Alvarez O, Buff A. Novel hollow-core chalcogenide fiber with anti-resonant arches for high-power infrared laser transmission[J]. Proceedings of SPIE, 11261, 112610W(2020).

    [40] Carcreff J, Cheviré F, Galdo E et al. Mid-infrared hollow core fiber drawn from a 3D printed chalcogenide glass preform[J]. Optical Materials Express, 11, 198-209(2020).

    [41] Carcreff J, Cheviré F, Lebullenger R et al. Investigation on chalcogenide glass additive manufacturing for shaping mid-infrared optical components and microstructured optical fibers[J]. Crystals, 11, 228-239(2021).

    Hao Zhang, Haitao Guo, Yantao Xu, Man Li, Wenchao Ma. Research Progress in Chalcogenide Glass Fibers for Infrared Laser Delivery[J]. Chinese Journal of Lasers, 2022, 49(1): 0101007
    Download Citation