• Frontiers of Optoelectronics
  • Vol. 13, Issue 3, 196 (2020)
Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, and Ghada I. KOLEILAT*
Author Affiliations
  • Department of Chemical Engineering, Dalhousie University, Halifax, Nova Scotia, B3J 1Z1, Canada
  • show less
    DOI: 10.1007/s12200-020-1039-6 Cite this Article
    Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Frontiers of Optoelectronics, 2020, 13(3): 196 Copy Citation Text show less
    References

    [1] Manser J S, Christians J A, Kamat P V. Intriguing optoelectronic properties of metal halide perovskites. Chemical Reviews, 2016, 116(21): 12956–13008

    [2] Zhou C, Lin H, He Q, Xu L, Worku M, Chaaban M, Lee S, Shi X, Du M H, Ma B. Low dimensional metal halide perovskites and hybrids. Materials Science and Engineering R Reports, 2019, 137: 38–65

    [3] Shi E, Gao Y, Finkenauer B P, Akriti, Coffey A H, Dou L. Twodimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews, 2018, 47(16): 6046–6072

    [4] Shi E, Dou L. A leap towards high-performance 2D perovskite photodetectors. Trends in Chemistry, 2019, 1(4): 365–367

    [5] Ma S, Cai M, Cheng T, Ding X, Shi X, Alsaedi A, Hayat T, Ding Y, Tan Z, Dai S. Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications. Science China Materials, 2018, 61(10): 1257–1277

    [6] Hong K, Van Le Q, Kim S Y, Jang H W. Low-dimensional halide perovskites: review and issues. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2018, 6(9): 2189– 2209

    [7] Chao L, Wang Z, Xia Y, Chen Y, Huang W. Recent progress on low dimensional perovskite solar cells. Journal of Energy Chemistry, 2018, 27(4): 1091–1100

    [8] Park N G. Research direction toward scalable, stable, and high efficiency perovskite solar cells. Advanced Energy Materials, 2020, 10(13): 1903106

    [9] hang J, Yang X, Deng H, Qiao K, Farooq U, Ishaq M, Yi F, Liu H, Tang J, Song H. Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Letters, 2017, 9(3): 36

    [10] Forgacs D, Wojciechowski K, Malinkiewicz O. Perovskite Photovoltaics: From Laboratory to Industry. In: Petrova-Koch V, Hezel R, Goetzberger A, eds. High-Efficient Low-Cost Photovoltaics. Cham: Springer, 2020, 219–255

    [11] McMeekin D P, Wang Z, Rehman W, Pulvirenti F, Patel J B, Noel N K, Johnston M B, Marder S R, Herz L M, Snaith H J. Crystallization kinetics and morphology control of formamidinium- cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution. Advanced Materials, 2017, 29(29): 1607039

    [12] Liu C, Cheng Y B, Ge Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 2020, 49(6): 1653–1687

    [13] Tyagi P, Arveson S M, Tisdale W A. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. Journal of Physical Chemistry Letters, 2015, 6(10): 1911–1916

    [14] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344

    [15] Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019–9038

    [16] Edri E, Kirmayer S, Kulbak M, Hodes G, Cahen D. Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. Journal of Physical Chemistry Letters, 2014, 5(3): 429–433

    [17] Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M, Snaith H J. Lead-free organic– inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 2014, 7(9): 3061–3068

    [18] Tan K W, Moore D T, Saliba M, Sai H, Estroff L A, Hanrath T, Snaith H J,Wiesner U. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano, 2014, 8(5): 4730–4739

    [19] D’Innocenzo V, Grancini G, Alcocer MJ, Kandada A R S, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A. Excitons versus free charges in organo-lead tri-halide perovskites. Nature Communications, 2014, 5(1): 3586

    [20] Qian L, Sun Y, Wu M, Li C, Xie D, Ding L, Shi G. A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale, 2018, 10(15): 6837–6843

    [21] Hossain A, Roy S, Sakthipandi K. The external and internal influences on the tuning of the properties of perovskites: an overview. Ceramics International, 2019, 45(4): 4152–4166

    [22] Kitazawa N, Watanabe Y, Nakamura Y. Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals. Journal of Materials Science, 2002, 37(17): 3585–3587

    [23] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Letters, 2013, 13(4): 1764– 1769

    [24] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015, 15(6): 3692–3696

    [25] Dubey A, Adhikari N, Mabrouk S,Wu F, Chen K, Yang S, Qiao Q. A strategic review on processing routes towards highly efficient perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(6): 2406–2431

    [26] Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications, 2018, 9(1): 2225

    [27] Chilvery A, Das S, Guggilla P, Brantley C, Sunda-Meya A. A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells. Science and Technology of Advanced Materials, 2016, 17(1): 650–658

    [28] Kong W, Wang G, Zheng J, Hu H, Chen H, Li Y, Hu M, Zhou X, Liu C, Chandrashekar B N, Amini A, Wang J, Xu B, Cheng C. Fabricating high-efficient blade-coated perovskite solar cells under ambient condition using lead acetate trihydrate. Solar RRL, 2018, 2(3): 1700214

    [29] Li C, Yin J, Chen R, Lv X, Feng X,Wu Y, Cao J. Monoammonium porphyrin for blade-coating stable large-area perovskite solar cells with>18% efficiency. Journal of the American Chemical Society, 2019, 141(15): 6345–6351

    [30] Sun S, Yuan D, Xu Y, Wang A, Deng Z. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano, 2016, 10(3): 3648–3657

    [31] Lan C, Zhou Z, Wei R, Ho J C. Two-dimensional perovskite materials: from synthesis to energy-related applications. Materials Today Energy, 2019, 11: 61–82

    [32] Even J, Pedesseau L, Katan C. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites. ChemPhysChem, 2014, 15(17): 3733–3741

    [33] Green M, Ho-Baillie A, Snaith H. The emergence of perovskite solar cells. Nature Photonics, 2014, 8: 506–514

    [34] Ahmadi M, Wu T, Hu B. A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics. Advanced Materials, 2017, 29(41): 1605242

    [35] Nayak P K, Moore D T, Wenger B, Nayak S, Haghighirad A A, Fineberg A, Noel N K, Reid O G, Rumbles G, Kukura P, Vincent K A, Snaith H J. Mechanism for rapid growth of organic-inorganic halide perovskite crystals. Nature Communications, 2016, 7(1): 13303

    [36] Wu K, Bera A, Ma C, Du Y, Yang Y, Li L, Wu T. Temperaturedependent excitonic photoluminescence of hybrid organometal halide perovskite films. Physical Chemistry Chemical Physics, 2014, 16(41): 22476–22481

    [37] Papavassiliou G C, Koutselas I B. Structural, optical and related properties of some natural three-and lower-dimensional semiconductor systems. Synthetic Metals, 1995, 71(1–3): 1713–1714

    [38] Mehrabian M, Dalir S, Mahmoudi G, Miroslaw B, Babashkina M G, Dektereva A V, Safin D A. A highly stable all-inorganic CsPbBr3 perovskite solar cell. European Journal of Inorganic Chemistry, 2019, 2019(32): 3699–3703

    [39] Ling Y, Yuan Z, Tian Y,Wang X,Wang J C, Xin Y, Hanson K, Ma B, Gao H. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Advanced Materials, 2016, 28(2): 305–311

    [40] Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050– 6051

    [41] Hu Y, Spies L M, Alonso-álvarez D, Mocherla P, Jones H, Hanisch J, Bein T, Barnes P R F, Docampo P. Identifying and controlling phase purity in 2D hybrid perovskite thin films. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(44): 22215–22225

    [42] Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies DM, Li R, Yang Z, Niu T,Wang X, Amassian A, Zhao K, Liu S F. Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy & Environmental Science, 2017, 10(10): 2095–2102

    [43] Bekenstein Y, Koscher B A, Eaton S W, Yang P, Alivisatos A P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. Journal of the American Chemical Society, 2015, 137(51): 16008–16011

    [44] Shamsi J, Dang Z, Bianchini P, Canale C, Stasio F D, Brescia R, Prato M, Manna L. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. Journal of the American Chemical Society, 2016, 138(23): 7240–7243

    [45] Yuan Z, Shu Y, Tian Y, Xin Y, Ma B. A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks. Chemical Communications, 2015, 51(91): 16385–16388

    [46] Sichert J A, Tong Y, Mutz N, Vollmer M, Fischer S, Milowska K Z, García Cortadella R, Nickel B, Cardenas-Daw C, Stolarczyk J K, Urban A S, Feldmann J. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Letters, 2015, 15(10): 6521– 6527

    [47] Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349(6255): 1518–1521

    [48] Hintermayr V A, Richter A F, Ehrat F, D?blinger M, Vanderlinden W, Sichert J A, Tong Y, Polavarapu L, Feldmann J, Urban A S. Tuning the optical properties of perovskite nanoplatelets through composition and thickness by ligand-assisted exfoliation. Advanced Materials, 2016, 28(43): 9478–9485

    [49] Ha S T, Liu X, Zhang Q, Giovanni D, Sum T C, Xiong Q. Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Advanced Optical Materials, 2014, 2(9): 838– 844

    [50] Schmidt L C, Pertegás A, González-Carrero S, Malinkiewicz O, Agouram S, Mínguez Espallargas G, Bolink H J, Galian R E, Pérez-Prieto J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. Journal of the American Chemical Society, 2014, 136(3): 850–853

    [51] Ma C, Shen D, Ng T W, Lo M F, Lee C S. 2D perovskites with short interlayer distance for high-performance solar cell application. Advanced Materials, 2018, 30(22): 1800710

    [52] Liang D, Peng Y, Fu Y, Shearer M J, Zhang J, Zhai J, Zhang Y, Hamers R J, Andrew T L, Jin S. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 2016, 10(7): 6897–6904

    [53] Liu Y, Ye H, Zhang Y, Zhao K, Yang Z, Yuan Y, Wu H, Zhao G, Yang Z, Tang J, Xu Z, Liu S F. Surface-tension-controlled crystallization for high-quality 2D perovskite single crystals for ultrahigh photodetection. Matter, 2019, 1(2): 465–480

    [54] Niu T, Ren H, Wu B, Xia Y, Xie X, Yang Y, Gao X, Chen Y, Huang W. Reduced-dimensional perovskite enabled by organic diamine for efficient photovoltaics. Journal of Physical Chemistry Letters, 2019, 10(10): 2349–2356

    [55] Zhang X, Munir R, Xu Z, Liu Y, Tsai H, Nie W, Li J, Niu T, Smilgies DM, Kanatzidis MG, Mohite A D, Zhao K, Amassian A, Liu S F. Phase transition control for high performance Ruddlesden–Popper perovskite solar cells. Advanced Materials, 2018, 30(21): 1707166

    [56] Ke W, Mao L, Stoumpos C C, Hoffman J, Spanopoulos I, Mohite A D, Kanatzidis M G. Compositional and solvent engineering in Dion–Jacobson 2D perovskites boosts solar cell efficiency and stability. Advanced Energy Materials, 2019, 9(10): 1803384

    [57] Hasan M M, Clegg C, Manning M, El Ghanam A, Su C, Harding M D, Bennett C, Hill I G, Koleilat G I. Stable efficient methylammonium lead iodide thin film photodetectors with highly oriented millimeter-sized crystal grains. ACS Photonics, 2020, 7 (1): 57–67

    [58] Wang K, Wu C, Yang D, Jiang Y, Priya S. Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano, 2018, 12(5): 4919–4929

    [59] Quan L N, Yuan M, Comin R, Voznyy O, Beauregard E M, Hoogland S, Buin A, Kirmani A R, Zhao K, Amassian A, Kim D H, Sargent E H. Ligand-stabilized reduced-dimensionality perovskites. Journal of the American Chemical Society, 2016, 138(8): 2649–2655

    [60] Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D. High-efficiency twodimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536(7616): 312–316

    [61] Ono L K, Qi Y. Research progress on organic–inorganic halide perovskite materials and solar cells. Journal of Physics. D, Applied Physics, 2018, 51(9): 093001

    [62] Ren H, Yu S, Chao L, Xia Y, Sun Y, Zuo S, Li F, Niu T, Yang Y, Ju H, Li B, Du H, Gao X, Zhang J, Wang J, Zhang L, Chen Y, Huang W. Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction. Nature Photonics, 2020, 14(3): 154–163

    [63] Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials, 2016, 28(8): 2852–2867

    [64] Wu G, Li X, Zhou J, Zhang J, Zhang X, Leng X,Wang P, Chen M, Zhang D, Zhao K, Liu S F, Zhou H, Zhang Y. Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing. Advanced Materials, 2019, 31(42): 1903889

    [65] Ma L, Ju M G, Dai J, Zeng X C. Tin and germanium based twodimensional Ruddlesden–Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. Nanoscale, 2018, 10(24): 11314–11319

    [66] Cheng P, Wu T, Liu J, Deng W Q, Han K. Lead-free, twodimensional mixed germanium and tin perovskites. Journal of Physical Chemistry Letters, 2018, 9(10): 2518–2522

    [67] Byun J, Cho H,Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W. Efficient visible quasi-2D perovskite light-emitting diodes. Advanced Materials, 2016, 28(34): 7515–7520

    [68] Soe C M M, Stoumpos C C, Kepenekian M, Traoré B, Tsai H, Nie W, Wang B, Katan C, Seshadri R, Mohite A D, Even J, Marks T J, Kanatzidis M G. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. Journal of the American Chemical Society, 2017, 139(45): 16297–16309

    [69] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R,Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W. Perovskite light-emitting diodes based on solutionprocessed self-organized multiple quantum wells. Nature Photonics, 2016, 10(11): 699–704

    [70] Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S. The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Advanced Energy Materials, 2018, 8(21): 1800051

    [71] Yao K, Wang X, Xu Y X, Li F, Zhou L. Multilayered perovskite materials based on polymeric-ammonium cations for stable largearea solar cell. Chemistry of Materials, 2016, 28(9): 3131–3138

    [72] Lai H, Kan B, Liu T, Zheng N, Xie Z, Zhou T, Wan X, Zhang X, Liu Y, Chen Y. Two-dimensional Ruddlesden–Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. Journal of the American Chemical Society, 2018, 140(37): 11639–11646

    [73] Proppe A H, Quintero-Bermudez R, Tan H, Voznyy O, Kelley S O, Sargent E H. Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. Journal of the American Chemical Society, 2018, 140(8): 2890–2896

    [74] Stoumpos C C, Soe C MM, Tsai H, Nie W, Blancon J C, Cao D H, Liu F, Traoré B, Katan C, Even J, Mohite A D, Kanatzidis M G. High members of the 2D Ruddlesden-Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2- (CH3NH3)4Pb5I16. Chem, 2017, 2(3): 427–440

    [75] Fraccarollo A, Canti L, Marchese L, Cossi M. First principles study of 2D layered organohalide tin perovskites. Journal of Chemical Physics, 2017, 146(23): 234703

    [76] Koutselas I B, Ducasse L, Papavassiliou G C. Electronic properties of three-and low-dimensional semiconducting materials with Pb halide and Sn halide units. Journal of Physics Condensed Matter, 1996, 8(9): 1217–1227

    [77] Liu J, Leng J, Wu K, Zhang J, Jin S. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. Journal of the American Chemical Society, 2017, 139(4): 1432–1435

    [78] Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H. Perovskite energy funnels for efficient lightemitting diodes. Nature Nanotechnology, 2016, 11(10): 872–877

    [79] Kwon H C, Yang W, Lee D, Ahn J, Lee E, Ma S, Kim K, Yun S C, Moon J. Investigating recombination and charge carrier dynamics in a one-dimensional nanopillared perovskite absorber. ACS Nano, 2018, 12(5): 4233–4245

    [80] Du W, Zhang S, Shi J, Chen J, Wu Z, Mi Y, Liu Z, Li Y, Sui X, Wang R, Qiu X, Wu T, Xiao Y, Zhang Q, Liu X. Strong exciton– photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics, 2018, 5(5): 2051–2059

    [81] Xu X, Zhang X, Deng W, Jie J, Zhang X. 1D organic–inorganic hybrid perovskite micro/nanocrystals: fabrication, assembly, and optoelectronic applications. Small Methods, 2018, 2(7): 1700340

    [82] Ha S T, Su R, Xing J, Zhang Q, Xiong Q. Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science (Cambridge), 2017, 8(4): 2522–2536

    [83] Horváth E, Spina M, Szekrényes Z, Kamarás K, Gaal R, Gachet D, Forró L. Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nano Letters, 2014, 14(12): 6761–6766

    [84] Zhang D, Eaton S W, Yu Y, Dou L, Yang P. Solution-phase synthesis of cesium lead halide perovskite nanowires. Journal of the American Chemical Society, 2015, 137(29): 9230–9233

    [85] Xing J, Liu X F, Zhang Q, Ha S T, Yuan Y W, Shen C, Sum T C, Xiong Q. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Letters, 2015, 15(7): 4571–4577

    [86] Chen L J, Lee C R, Chuang Y J, Wu Z H, Chen C. Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application. Journal of Physical Chemistry Letters, 2016, 7(24): 5028–5035

    [87] Wong A B, Lai M, Eaton S W, Yu Y, Lin E, Dou L, Fu A, Yang P. Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes. Nano Letters, 2015, 15(8): 5519– 5524

    [88] Chen P, Bai Y, Lyu M, Yun J H, Hao M, Wang L. Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications. Solar RRL, 2018, 2(3): 1700186

    [89] Yuan Z, Zhou C, Tian Y, Shu Y, Messier J,Wang J C, van de Burgt L J, Kountouriotis K, Xin Y, Holt E, Schanze K, Clark R, Siegrist T, Ma B. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nature Communications, 2017, 8(1): 14051

    [90] Jung M H. Broadband white light emission from one-dimensional zigzag edge-sharing perovskite. New Journal of Chemistry, 2020, 44(1): 171–180

    [91] Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 2016, 26(15): 2435–2445

    [92] Zhou Q, Bai Z, Lu W G, Wang Y, Zou B, Zhong H. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Advanced Materials, 2016, 28(41): 9163–9168

    [93] Zhao L, Yeh Y W, Tran N L, Wu F, Xiao Z, Kerner R A, Lin Y L, Scholes G D, Yao N, Rand B P. In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices. ACS Nano, 2017, 11(4): 3957–3964

    [94] Liu J, Hu F, Zhou Y, Zhang C, Wang X, Xiao M. Polarized emission from single perovskite FAPbBr3 nanocrystals. Journal of Luminescence, 2020, 221: 117032

    [95] Nikl M, Mihokova E, Nitsch K, Somma F, Giampaolo C, Pazzi G P, Fabeni P, Zazubovich S. Photoluminescence of Cs4PbBr6 crystals and thin films. Chemical Physics Letters, 1999, 306(5–6): 280–284

    [96] Han D, Shi H, Ming W, Zhou C, Ma B, Saparov B, Ma Y Z, Chen S, Du M H. Unraveling luminescence mechanisms in zerodimensional halide perovskites. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2018, 6(24): 6398– 6405

    [97] Xu L J, Sun C Z, Xiao H, Wu Y, Chen Z N. Green-light-emitting diodes based on tetrabromide manganese (II) complex through solution process. Advanced Materials, 2017, 29(10): 1605739

    [98] Worku M, Xu L J, Chaaban M, Ben-Akacha A, Ma B. Optically pumped white light-emitting diodes based on metal halide perovskites and perovskite-related materials. APL Materials, 2020, 8(1): 010902

    [99] ebig J C, Kühn I, Flohre J, Kirchartz T. Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Letters, 2016, 1(1): 309–314

    [100] ?z S, Hebig J C, Jung E, Singh T, Lepcha A, Olthof S, Jan F, Gao Y, German R, van Loosdrecht P H M, Meerholz K, Kirchartz T, Mathur S. Zero-dimensional (CH3NH3)3Bi2I9 perovskite for optoelectronic applications. Solar Energy Materials and Solar Cells, 2016, 158: 195–201

    [101] Pious J K, Lekshmi M L, Muthu C, Rakhi R B, Nair V C. Zerodimensional methylammonium bismuth iodide-based lead-free perovskite capacitor. ACS Omega, 2017, 2(9): 5798–5802

    [102] Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum T C, Lam Y M. The origin of high efficiency in lowtemperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science, 2014, 7(1): 399–407

    [103] Ponseca C S Jr, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundstr?m V. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecondlong balanced mobilities, and slow recombination. Journal of the American Chemical Society, 2014, 136(14): 5189–5192

    [104] Dong C R,Wang Y, Zhang K, Zeng H. Halide perovskite materials as light harvesters for solar energy conversion. EnergyChem, 2020, 2(1): 100026

    [105] Sweeney S J, Mukherjee J. Optoelectronic Devices and Materials. In: Kasap S, Capper P, eds. Springer Handbook of Electronic and Photonic Materials. Cham: Springer, 2017

    [106] Eperon G E, Leijtens T, Bush K A, Prasanna R, Green T,Wang J T, McMeekin D P, Volonakis G, Milot R L, May R, Palmstrom A, Slotcavage D J, Belisle R A, Patel J B, Parrott E S, Sutton R J, Ma W, Moghadam F, Conings B, Babayigit A, Boyen H G, Bent S, Giustino F, Herz L M, Johnston M B, McGehee M D, Snaith H J. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354(6314): 861–865

    [107] Sarritzu V, Sestu N, Marongiu D, Chang X, Wang Q, Masi S, Colella S, Rizzo A, Gocalinska A, Pelucchi E, Mercuri M L, Quochi F, Saba M, Mura A, Bongiovanni G. Direct or indirect bandgap in hybrid lead halide perovskites? Advanced Optical Materials, 2018, 6(10): 1701254

    [108] Hutter E M, Gélvez-Rueda M C, Osherov A, Bulovi? V, Grozema F C, Stranks S D, Savenije T J. Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. Nature Materials, 2017, 16(1): 115–120

    [109] Brenes R, Guo D, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulovi? V, Savenije T J, Stranks S D. Metal halide perovskite polycrystalline films exhibiting properties of single crystals. Joule, 2017, 1(1): 155–167

    [110] Saba M, Cadelano M, Marongiu D, Chen F, Sarritzu V, Sestu N, Figus C, Aresti M, Piras R, Lehmann A G, Cannas C, Musinu A, Quochi F, Mura A, Bongiovanni G. Correlated electron-hole plasma in organometal perovskites. Nature Communications, 2014, 5(1): 5049

    [111] Tao S X, Cao X, Bobbert P A. Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense. Scientific Reports, 2017, 7(1): 14386

    [112] Srimath Kandada A R, Neutzner S, D’Innocenzo V, Tassone F, Gandini M, Akkerman Q A, Prato M, Manna L, Petrozza A, Lanzani G. Nonlinear carrier interactions in lead halide perovskites and the role of defects. Journal of the American Chemical Society, 2016, 138(41): 13604–13611

    [113] Ke W, Kanatzidis M G. Prospects for low-toxicity lead-free perovskite solar cells. Nature Communications, 2019, 10(1): 965

    [114] Gao P, Gr?tzel M, Nazeeruddin M K. Organohalide lead perovskites for photovoltaic applications. Energy & Environmental Science, 2014, 7(8): 2448–2463

    [115] Kulkarni S A, Baikie T, Boix P P, Yantara N, Mathews N, Mhaisalkar S. Band-gap tuning of lead halide perovskites using a sequential deposition process. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(24): 9221–9225

    [116] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014, 7(3): 982

    [117] Levchuk I, Osvet A, Tang X, Brandl M, Perea J D, Hoegl F, Matt G J, Hock R, Batentschuk M, Brabec C J. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Letters, 2017, 17(5): 2765– 2770

    [118] Wang S, Sakurai T, Wen W, Qi Y. Energy level alignment at interfaces in metal halide perovskite solar cells. Advanced Materials Interfaces, 2018, 5(22): 1800260

    [119] Kieslich G, Sun S, Cheetham A K. An extended tolerance factor approach for organic–inorganic perovskites. Chemical Science (Cambridge), 2015, 6(6): 3430–3433

    [120] Filip M R, Eperon G E, Snaith H J, Giustino F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nature Communications, 2014, 5(1): 5757

    [121] Ou Q, Bao X, Zhang Y, Shao H, Xing G, Li X, Shao L, Bao Q. Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Materials Science, 2019, 1(4): 268–287

    [122] SmithMD, Pedesseau L, Kepenekian M, Smith I C, Katan C, Even J, Karunadasa H I. Decreasing the electronic confinement in layered perovskites through intercalation. Chemical Science (Cambridge), 2017, 8(3): 1960–1968

    [123] Fox M. Optical Properties of Solids. Oxford: Oxford University Press, 2001

    [124] Mitzi D B. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chemistry of Materials, 1996, 8(3): 791–800

    [125] Pandey M, Jacobsen K W, Thygesen K S. Band gap tuning and defect tolerance of atomically thin two-dimensional organicinorganic halide perovskites. Journal of Physical Chemistry Letters, 2016, 7(21): 4346–4352

    [126] Lanty G, Jemli K,Wei Y, Leymarie J, Even J, Lauret J S, Deleporte E. Room-temperature optical tunability and inhomogeneous broadening in 2D-layered organic-inorganic perovskite pseudobinary alloys. Journal of Physical Chemistry Letters, 2014, 5(22): 3958–3963

    [127] Weidman M C, Seitz M, Stranks S D, TisdaleWA. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano, 2016, 10(8): 7830–7839

    [128] Tanaka K, Kondo T. Bandgap and exciton binding energies in leadiodide based natural quantum-well crystals. Science and Technology of Advanced Materials, 2003, 4(6): 599–604

    [129] Vashishtha P, Metin D Z, Cryer M E, Chen K, Hodgkiss J M, Gaston N, Halpert J E. Shape-, size-, and composition-controlled thallium lead halide perovskite nanowires and nanocrystals with tunable band gaps. Chemistry of Materials, 2018, 30(9): 2973– 2982

    [130] Qiu T, Hu Y, Xu F, Yan Z, Bai F, Jia G, Zhang S. Recent advances in one-dimensional halide perovskites for optoelectronic applications. Nanoscale, 2018, 10(45): 20963–20989

    [131] Im J H, Lee C R, Lee J W, Park S W, Park N G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3 (10): 4088–4093

    [132] Li G, Liu Z, Huang Q, Gao Y, Regula M, Wang D, Chen L Q, Wang D. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nature Energy, 2018, 3(12): 1076–1083

    [133] Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S F. 3D–2D–0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability. Advanced Energy Materials, 2018, 8(15): 1703246

    [134] Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Advanced Materials, 2014, 26(10): 1584– 1589

    [135] Verma J, Islam SM, Verma A, Protasenko V, Jena D. Nitride LEDs Based on QuantumWells and Quantum Dots. In: Huang J J, Kuo H C, Shen S C, eds. Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications, 2nd edition. Cambridge: Woodhead Publishing, 2018, 377–413

    [136] Meggiolaro D, Motti S G, Mosconi E, Barker A J, Ball J, Andrea Riccardo Perini C, Deschler F, Petrozza A, De Angelis F. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy & Environmental Science, 2018, 11(3): 702–713

    [137] Herz L M. Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annual Review of Physical Chemistry, 2016, 67(1): 65–89

    [138] Xing G, Wu B, Wu X, Li M, Du B, Wei Q, Guo J, Yeow E K, Sum T C, Huang W. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nature Communications, 2017, 8(1): 14558

    [139] Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C. Long-range balanced electron- and holetransport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344–347

    [140] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522– 525

    [141] Wu X, Trinh M T, Niesner D, Zhu H, Norman Z, Owen J S, Yaffe O, Kudisch B J, Zhu X Y. Trap states in lead iodide perovskites. Journal of the American Chemical Society, 2015, 137(5): 2089– 2096

    [142] Zheng K, Zidek K, Abdellah M, Chen J, Chábera P, Zhang W, Al- Marri M J, Pullerits T. High excitation intensity opens a new trapping channel in organic–inorganic hybrid perovskite nanoparticles. ACS Energy Letters, 2016, 1(6): 1154–1161

    [143] Freppon D J, Men L, Burkhow S J, Petrich JW, Vela J, Smith E A. Photophysical properties of wavelength-tunable methylammonium lead halide perovskite nanocrystals. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(1): 118–126

    [144] Jin H, Debroye E, Keshavarz M, Scheblykin I G, Roeffaers M B J, Hofkens J, Steele J A. It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Materials Horizons, 2020, 7(2): 397–410

    [145] Yang L, Dall’Agnese C, Dall’Agnese Y, Chen G, Gao Y, Sanehira Y, Jena A K,Wang X F, Gogotsi Y, Miyasaka T. Surface-modified metallic Ti3C2Tx MXene as electron transport layer for planar heterojunction perovskite solar cells. Advanced Functional Materials, 2019, 29(46): 1905694

    [146] Lin Q, Armin A, Nagiri R C R, Burn P L, Meredith P. Electrooptics of perovskite solar cells. Nature Photonics, 2015, 9(2): 106– 112

    [147] Even J, Pedesseau L, Katan C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. Journal of Physical Chemistry C, 2014, 118(22): 11566–11572

    [148] Galkowski K, Mitioglu A, Miyata A, Plochocka P, Portugall O, Eperon G E, Wang J T W, Stergiopoulos T, Stranks S D, Snaith H J, Nicholas R J. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy & Environmental Science, 2016, 9(3): 962–970

    [149] Mauck C M, Tisdale W A. Excitons in 2D organic–inorganic halide perovskites. Trends in Chemistry, 2019, 4(1): 380–393

    [150] Munson K T, Kennehan E R, Doucette G S, Asbury J B. Dynamic disorder dominates delocalization, transport, and recombination in halide perovskites. Chem, 2018, 4(12): 2826–2843

    [151] Kim Y H, Kim J S, Lee T W. Strategies to improve luminescence efficiency of metal-halide perovskites and light-emitting diodes. Advanced Materials, 2019, 31(47): 1804595

    [152] Kim Y H, Wolf C, Kim H, Lee T W. Charge carrier recombination and ion migration in metal-halide perovskite nanoparticle films for efficient light-emitting diodes. Nano Energy, 2018, 52: 329–335

    [153] Shi E, Deng S, Yuan B, Gao Y, Akriti, Yuan L, Davis C S, Zemlyanov D, Yu Y, Huang L, Dou L. Extrinsic and dynamic edge states of two-dimensional lead halide perovskites. ACS Nano, 2019, 13(2): 1635–1644

    [154] Cheng B, Li T Y, Wei P C, Yin J, Ho K T, Retamal J R D, Mohammed O F, He J H. Layer-edge device of two-dimensional hybrid perovskites. Nature Communications, 2018, 9(1): 5196

    [155] Thomson S. Measuring Charge Carrier Lifetime in Halide Perovskite Using Time-Resolved Photoluminescence Spectroscopy. Edinburgh Instruments, 2018, 23

    [156] Han Q, Bae S H, Sun P, Hsieh Y T, Yang Y M, Rim Y S, Zhao H, Chen Q, Shi W, Li G, Yang Y. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Advanced Materials, 2016, 28(11): 2253–2258

    [157] Yang B, Han K. Charge-carrier dynamics of lead-free halide perovskite nanocrystals. Accounts of Chemical Research, 2019, 52(11): 3188–3198

    [158] Zhi R, Hu J, Yang S, Perumal Veeramalai C, Zhang Z, Saleem M I, Sulaman M, Tang Y, Zou B. A facile method to synthesize twodimensional CsPb2Br5 nano-/micro-sheets for high-performance solution-processed photodetectors. Journal of Alloys and Compounds, 2020, 824: 153970

    [159] Passarelli J V, Fairfield D J, Sather N A, Hendricks M P, Sai H, Stern C L, Stupp S I. Enhanced out-of-plane conductivity and photovoltaic performance in n = 1 layered perovskites through organic cation design. Journal of the American Chemical Society, 2018, 140(23): 7313–7323

    [160] Van Gompel W T M, Herckens R, Van Hecke K, Ruttens B, D’Haen J, Lutsen L, Vanderzande D. Towards 2D layered hybrid perovskites with enhanced functionality: introducing chargetransfer complexes via self-assembly. Chemical Communications (Cambridge), 2019, 55(17): 2481–2484

    [161] Gélvez-Rueda M C, Fridriksson M B, Dubey R K, Jager W F, van der Stam W, Grozema F C. Overcoming the exciton binding energy in two-dimensional perovskite nanoplatelets by attachment of conjugated organic chromophores. Nature Communications, 2020, 11(1): 1901

    [162] Yuan Y, Chae J, Shao Y, Wang Q, Xiao Z, Centrone A, Huang J. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Advanced Energy Materials, 2015, 5(15): 1500615

    [163] Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature Materials, 2015, 14(2): 193–198

    [164] Juarez-Perez E J, Sanchez R S, Badia L, Garcia-Belmonte G, Kang Y S, Mora-Sero I, Bisquert J. Photoinduced giant dielectric constant in lead halide perovskite solar cells. Journal of Physical Chemistry Letters, 2014, 5(13): 2390–2394

    [165] Deng Y, Xiao Z, Huang J. Light-induced self-poling effect on organometal trihalide perovskite solar cells for increased device efficiency and stability. Advanced Energy Materials, 2015, 5(20): 1500721

    [166] Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q. A polymer scaffold for self-healing perovskite solar cells. Nature Communications, 2016, 7(1): 10228

    [167] Nie W, Blancon J C, Neukirch A J, Appavoo K, Tsai H, Chhowalla M, Alam M A, Sfeir M Y, Katan C, Even J, Tretiak S, Crochet J J, Gupta G, Mohite A D. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nature Communications, 2016, 7(1): 11574

    [168] Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chemical Science (Cambridge), 2015, 6(1): 613–617

    [169] Lee J W, Kim S G, Yang J M, Yang Y, Park N G. Verification and mitigation of ion migration in perovskite solar cells. APL Materials, 2019, 7(4): 041111

    [170] Yang D, Li X, Zeng H. Surface chemistry of all inorganic halide perovskite nanocrystals: passivation mechanism and stability. Advanced Materials Interfaces, 2018, 5(8): 1701662

    [171] Li Z, Xiao C, Yang Y, Harvey S P, Kim D H, Christians J A, Yang M, Schulz P, Nanayakkara S U, Jiang C S, Luther J M, Berry J J, Beard M C, Al-Jassim M M, Zhu K. Extrinsic ion migration in perovskite solar cells. Energy & Environmental Science, 2017, 10(5): 1234–1242

    [172] Zhang H, Fu X, Tang Y, Wang H, Zhang C, Yu W W, Wang X, Zhang Y, Xiao M. Phase segregation due to ion migration in allinorganic mixed-halide perovskite nanocrystals. Nature Communications, 2019, 10(1): 1088

    [173] Cho J, DuBose J T, Le A N T, Kamat P V. Suppressed halide ion migration in 2D lead halide perovskites. ACS Materials Letters, 2020, 2(6): 565–570

    [174] Zhao Y C, Zhou W K, Zhou X, Liu K H, Yu D P, Zhao Q. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light, Science & Applications, 2017, 6(5): e16243–e16248

    [175] Xing J, Wang Q, Dong Q, Yuan Y, Fang Y, Huang J. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Physical Chemistry Chemical Physics, 2016, 18(44): 30484–30490

    [176] Lamberti F, Litti L, De Bastiani M, Sorrentino R, Gandini M, Meneghetti M, Petrozza A. High-quality, ligands-free, mixedhalide perovskite nanocrystals inks for optoelectronic applications. Advanced Energy Materials, 2017, 7(8): 1601703

    [177] Miao J, Zhang F. Recent progress on highly sensitive perovskite photodetectors. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2019, 7(7): 1741–1791

    [178] Yang Y, Dai H, Yang F, Zhang Y, Luo D, Zhang X, Wang K, Sun X W, Yao J. All-perovskite photodetector with fast response. Nanoscale Research Letters, 2019, 14(1): 291

    [179] Li C, Huang W, Gao L, Wang H, Hu L, Chen T, Zhang H. Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials. Nanoscale, 2020, 12(4): 2201– 2227

    [180] Wang X, Li M, Zhang B, Wang H, Zhao Y, Wang B. Recent progress in organometal halide perovskite photodetectors. Organic Electronics, 2018, 52: 172–183

    [181] Saran R, Curry R J. Lead sulphide nanocrystal photodetector technologies. Nature Photonics, 2016, 10(2): 81–92

    [182] Fang Y, Dong Q, Shao Y, Yuan Y, Huang J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9(10): 679–686

    [183] Gao L, Zeng K, Guo J, Ge C, Du J, Zhao Y, Chen C, Deng H, He Y, Song H, Niu G, Tang J. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Letters, 2016, 16(12): 7446–7454

    [184] Geng X, Wang F, Tian H, Feng Q, Zhang H, Liang R, Shen Y, Ju Z, Gou G Y, Deng N, Li Y T, Ren J, Xie D, Yang Y, Ren T L. Ultrafast photodetector by integrating perovskite directly on silicon wafer. ACS Nano, 2020, 14(3): 2860–2868

    [185] Fang Y, Huang J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Advanced Materials, 2015, 27(17): 2804–2810

    [186] Dou L, Yang Y M, You J, Hong Z, Chang W H, Li G, Yang Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 2014, 5(1): 5404

    [187] Zeng J, Li X, Wu Y, Yang D, Sun Z, Song Z, Wang H, Zeng H. Space-confined growth of CsPbBr3 film achieving photodetectors with high performance in all figures of merit. Advanced Functional Materials, 2018, 28(43): 1804394

    [188] Hu X, Zhang X, Liang L, Bao J, Li S, Yang W, Xie Y. Highperformance flexible broadband photodetector based on organolead halide perovskite. Advanced Functional Materials, 2014, 24(46): 7373–7380

    [189] Baeg K J, Binda M, Natali D, Caironi M, Noh Y Y. Organic light detectors: photodiodes and phototransistors. Advanced Materials, 2013, 25(31): 4267–4295

    [190] Liu C, Wang K, Yi C, Shi X, Smith A W, Gong X, Heeger A J. Efficient perovskite hybrid photovoltaics via alcohol-vapor annealing treatment. Advanced Functional Materials, 2016, 26(1): 101–110

    [191] Hu W, Wu R, Yang S, Fan P, Yang J, Pan A. Solvent-induced crystallization for hybrid perovskite thin-film photodetector with high-performance and low working voltage. Journal of Physics. D, Applied Physics, 2017, 50(37): 375101

    [192] Cheng Z, Liu K, Yang J, Chen X, Xie X, Li B, Zhang Z, Liu L, Shan C, Shen D. High-performance planar-type ultraviolet photodetector based on high-quality CH3NH3PbCl3 perovskite single crystals. ACS Applied Materials & Interfaces, 2019, 11(37): 34144–34150

    [193] Wang F, Mei J, Wang Y, Zhang L, Zhao H, Zhao D. Fast photoconductive responses in organometal halide perovskite photodetectors. ACS Applied Materials & Interfaces, 2016, 8(4): 2840–2846

    [194] Shen Y, Yu D, Wang X, Huo C, Wu Y, Zhu Z, Zeng H. Twodimensional CsPbBr3/PCBM heterojunctions for sensitive, fast and flexible photodetectors boosted by charge transfer. Nanotechnology, 2018, 29(8): 085201

    [195] Li P, Shivananju B N, Zhang Y, Li S, Bao Q. High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets. Journal of Physics. D, Applied Physics, 2017, 50(9): 094002

    [196] Hu Q, Wu H, Sun J, Yan D, Gao Y, Yang J. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale, 2016, 8(9): 5350–5357

    [197] Liu J, Xue Y, Wang Z, Xu Z Q, Zheng C, Weber B, Song J, Wang Y, Lu Y, Zhang Y, Bao Q. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano, 2016, 10(3): 3536–3542

    [198] Deng H, Dong D, Qiao K, Bu L, Li B, Yang D, Wang H E, Cheng Y, Zhao Z, Tang J, Song H. Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. Nanoscale, 2015, 7(9): 4163–4170

    [199] Dong Y, Gu Y, Zou Y, Song J, Xu L, Li J, Xue J, Li X, Zeng H. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 2016, 12(40): 5622–5632

    [200] Li X, Yu D, Chen J, Wang Y, Cao F, Wei Y, Wu Y, Wang L, Zhu Y, Sun Z, Ji J, Shen Y, Sun H, Zeng H. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 2017, 11(2): 2015–2023

    [201] Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S, Lee J S. Allinorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chemical Communications, 2016, 52(10): 2067–2070

    [202] Li Y, Lv Y, Guo Z, Dong L, Zheng J, Chai C, Chen N, Lu Y, Chen C. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes. ACS Applied Materials & Interfaces, 2018, 10(18): 15888–15894

    [203] Jang D M, Kim D H, Park K, Park J, Lee J W, Song J K. Ultrasound synthesis of lead halide perovskite nanocrystals. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(45): 10625–10629

    [204] Hamed M S, Mola G T. Mixed halide perovskite solar cells: progress and challenges. Critical Reviews in Solid State and Material Sciences, 2029, 45(2): 85–112

    [205] Ludwigs S, ed. P3HT Revisited-From Molecular Scale to Solar Cell Devices (Vol. 265). Berlin: Springer, 2014

    [206] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510–519

    [207] Chen B, Yang M, Priya S, Zhu K. Origin of J–V hysteresis in perovskite solar cells. Journal of Physical Chemistry Letters, 2016, 7(5): 905–917

    [208] Li P, Zhang Y, Liang C, Xing G, Liu X, Li F, Liu X, Hu X, Shao G, Song Y. Phase pure 2D perovskite for high-performance 2D-3D heterostructured perovskite solar cells. Advanced Materials, 2018, 30(52): 1805323

    [209] Jena A K, Kulkarni A, Miyasaka T. Halide perovskite photovoltaics: background, status, and future prospects. Chemical Reviews, 2019, 119(5): 3036–3103

    [210] YangWS, Park BW, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376–1379

    [211] Snaith H. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. Journal of Physical Chemistry Letters, 2013, 4(21): 3623–3630

    [212] Wurfel U, Cuevas A, Wurfel P. Charge carrier separation in solar cells. IEEE Journal of Photovoltaics, 2015, 5(1): 461–469

    [213] Zhou D, Zhou T, Tian Y, Zhu X, Tu Y. Perovskite-based solar cells: materials, methods, and future perspectives. Journal of Nanomaterials, 2018, 2018: 8148072

    [214] Calió L, Kazim S, Gr?tzel M, Ahmad S. Hole-transport materials for perovskite solar cells. Angewandte Chemie International Edition, 2016, 55(47): 14522–14545

    [215] Guo Z, Gao L, Zhang C, Xu Z, Ma T. Low-temperature processed non-TiO2 electron selective layers for perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(11): 4572–4589

    [216] Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C. CH3 NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced Materials, 2013, 25(27): 3727–3732

    [217] Yu J C, Hong J A, Jung E D, Kim D B, Baek S M, Lee S, Cho S, Park S S, Choi K J, Song M H. Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Scientific Reports, 2018, 8(1): 1070

    [218] Fang Y, Bi C, Wang D, Huang J. The functions of fullerenes in hybrid perovskite solar cells. ACS Energy Letters, 2017, 2(4): 782–794

    [219] Bush K A, Palmstrom A F, Yu Z J, Boccard M, Cheacharoen R, Mailoa J P, McMeekin D P, Hoye R L Z, Bailie C D, Leijtens T, Peters I M, Minichetti M C, Rolston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith H J, Buonassisi T, Holman Z C, Bent S F, McGehee M D. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2017, 2(4): 17009

    [220] Swain B S, Lee J. Fabrication and optimization of nanocube mixed halide perovskite films for solar cell application. Solar Energy, 2020, 201: 209–218

    [221] Liu Q, Zhao Y, Ma Y, Sun X, Ge W, Fang Z, Bai H, Tian Q, Fan B, Zhang T. A mixed solvent for rapid fabrication of large-area methylammonium lead iodide layers by one-step coating at room temperature. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(31): 18275–18284

    [222] Hou W, Xiao Y, Han G, Qin C, Xiao L, Chang Y, Li H. Dimethyl sulfoxide and bromide methylamine co-treatment inducing defect healing for effective and stable perovskite solar cells. Materials Research Bulletin, 2019, 112: 165–173

    [223] Lyu M, Chen J, Park N G. Improvement of efficiency and stability of CuSCN-based inverted perovskite solar cells by post-treatment with potassium thiocyanate. Journal of Solid State Chemistry, 2019, 269: 367–374

    [224] Wang X D, Li W G, Liao J F, Kuang D B. Recent advances in halide perovskite single-crystal thin films: fabrication methods and optoelectronic applications. Solar RRL, 2019, 3(4): 1800294

    [225] Zhang J, Zhai G, Gao W, Zhang C, Shao Z, Mei F, Zhang J, Yang Y, Liu X, Xu B. Accelerated formation and improved performance of CH3NH3PbI3-based perovskite solar cells via solvent coordination and anti-solvent extraction. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(8): 4190–4198

    [226] Xia Y, Ran C, Chen Y, Li Q, Jiang N, Li C, Pan Y, Li T, Wang J, Huang W. Management of perovskite intermediates for highly efficient inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(7): 3193–3202

    [227] Zhou X, Zhang Y, Kong W, Hu M, Zhang L, Liu C, Li X, Pan C, Yu G, Cheng C, Xu B. Crystallization manipulation and morphology evolution for highly efficient perovskite solar cell fabrication via hydration water induced intermediate phase formation under heat assisted spin-coating. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(7): 3012–3021

    [228] Ye F, Chen H, Xie F, Tang W, YinM, He J, Bi E,Wang Y, Yang X, Han L. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy & Environmental Science, 2016, 9(7): 2295–2301

    [229] Hao F, Stoumpos C C, Guo P, Zhou N, Marks T J, Chang R P H, Kanatzidis M G. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. Journal of the American Chemical Society, 2015, 137(35): 11445–11452

    [230] Ma C, Shen D, Huang B, Li X, Chen W C, Lo M F, Wang P, Hon- Wah Lam M, Lu Y, Ma B, Lee C S. High performance lowdimensional perovskite solar cells based on a one dimensional lead iodide perovskite. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(15): 8811–8817

    [231] You P, Tang G, Yan F. Two-dimensional materials in perovskite solar cells. Materials Today Energy, 2019, 11: 128–158

    [232] Wei Y, Chu H, Chen B, Tian Y, Yang X, Cai B, Zhang Y, Zhao J. Two-dimensional cyclohexane methylamine-based perovskites as stable light absorbers for solar cells. Solar Energy, 2020, 201: 13– 20

    [233] Chang C Y, Tsai B C, Lin M Z, Huang Y C, Tsao C S. An integrated approach towards the fabrication of highly efficient and long-term stable perovskite nanowire solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(43): 22824–22833

    [234] Wang S W, Yan S, Wang M A, Chang L, Wang J L, Wang Z. Construction of nanowire CH3NH3PbI3-based solar cells with 17.62% efficiency by solvent etching technique. Solar Energy Materials and Solar Cells, 2017, 167: 173–177

    [235] Singh R, Suranagi S R, Yang S J, Cho K. Enhancing the power conversion efficiency of perovskite solar cells via the controlled growth of perovskite nanowires. Nano Energy, 2018, 51: 192–198

    [236] He J, Zhang F, Xiang Y, Lian J, Wang X, Zhang Y, Peng X, Zeng P, Qu J, Song J. Preparation of low dimensional antimonene oxides and their application in Cu:NiOx based planar pin perovskite solar cells. Journal of Power Sources, 2019, 435: 226819

    [237] Sanehira EM, Marshall A R, Christians J A, Harvey S P, Ciesielski P N, Wheeler L M, Schulz P, Lin L Y, Beard M C, Luther J M. Enhanced mobility CsPbI3 quantum dot arrays for recordefficiency, high-voltage photovoltaic cells. Science Advances, 2017, 3(10): eaao4204

    [238] Mao L, Wu Y, Stoumpos C C, Traore B, Katan C, Even J, Wasielewski M R, Kanatzidis M G. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10 – xClx. Journal of the American Chemical Society, 2017, 139(34): 11956–11963

    [239] Lau C F J, Deng X, Zheng J, Kim J, Zhang Z, Zhang M, Bing J, Wilkinson B, Hu L, Patterson R, Huang S, Ho-Baillie A. Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(14): 5580–5586

    [240] Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L, Yin L. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nature Communications, 2018, 9(1): 1076

    [241] Niezgoda J S, Foley B J, Chen A Z, Choi J J. Improved charge collection in highly efficient CsPbBrI2 solar cells with lightinduced dealloying. ACS Energy Letters, 2017, 2(5): 1043–1049

    [242] Mehdi H, Mhamdi A, Bouazizi A. Effect of perovskite precursor ratios and solvents volume on the efficiency of MAPbI3 – xClx mixed halide perovskite solar cells. Materials Science in Semiconductor Processing, 2020, 109: 104915

    [243] Guo N, Zhang T, Li G, Xu F, Qian X, Zhao Y. A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2. Journal of Semiconductors, 2017, 38(1): 014004

    [244] Yang F, Kamarudin M A, Zhang P, Kapil G, Ma T, Hayase S. Enhanced crystallization by methanol additive in antisolvent for achieving high-quality MAPbI3 perovskite films in humid atmosphere. ChemSusChem, 2018, 11(14): 2348–2357

    [245] Aydin E, Troughton J, Bastiani M D, Ugur E, Sajjad M, Alzahrani A, Neophytou M, Schwingenschl?gl U, Laquai F, Baran D, De Wolf S. Room-temperature-sputtered nanocrystalline nickel oxide as hole transport layer for p–i–n perovskite solar cells. ACS Applied Energy Materials, 2018, 1(11): 6227–6233

    [246] Guo Y, Yin X, Liu J, Chen W,Wen S, Que M, Xie H, Yang Y, Que W, Gao B. Vacuum thermal-evaporated SnO2 as uniform electron transport layer and novel management of perovskite intermediates for efficient and stable planar perovskite solar cells. Organic Electronics, 2019, 65: 207–214

    [247] Park I J, Kang G, Park M A, Kim J S, Seo S W, Kim D H, Zhu K, Park T, Kim J Y. Highly efficient and uniform 1 cm2 perovskite solar cells with an electrochemically deposited NiOx holeextraction layer. ChemSusChem, 2017, 10(12): 2660–2667

    [248] Yin G, Zhao H, Jiang H, Yuan S, Niu T, Zhao K, Liu Z, Liu S F. Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency. Advanced Functional Materials, 2018, 28(39): 1803269

    [249] Jiang H, Feng J, Zhao H, Li G, Yin G, Han Y, Yan F, Liu Z, Liu S. Low temperature fabrication for high performance flexible CsPbI2Br perovskite solar cells. Advancement of Science, 2018, 5(11): 1801117

    [250] Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Advanced Energy Materials, 2019, 9(14): 1803241

    [251] Liu Z, Chang J, Lin Z, Zhou L, Yang Z, Chen D, Zhang C, Liu S, Hao Y. High-performance planar perovskite solar cells using low temperature, solution-combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%. Advanced Energy Materials, 2018, 8(19): 1703432

    [252] Jo Y, Oh K S, Kim M, Kim K H, Lee H, Lee C W, Kim D S. High performance of planar perovskite solar cells produced from PbI2 (DMSO) and PbI2 (NMP) complexes by intramolecular exchange. Advanced Materials Interfaces, 2016, 3(10): 1500768

    [253] Gkini K E, Antoniadou M, Balis N, Kaltzoglou A, Kontos A G, Falaras P. Mixing cations and halide anions in perovskite solar cells. Materials Today: Proceedings, 2019, 19: 73–78

    [254] Jiang L L,Wang Z K, Li M, Zhang C C, Ye Q Q, Hu K H, Lu D Z, Fang P F, Liao L S. Passivated perovskite crystallization via g- C3N4 for high-performance solar cells. Advanced Functional Materials, 2018, 28(7): 1705875

    [255] Hadadian M, Correa-Baena J P, Goharshadi E K, Ummadisingu A, Seo J Y, Luo J, Gholipour S, Zakeeruddin SM, Saliba M, Abate A, Gr?tzel M, Hagfeldt A. Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Advanced Materials, 2016, 28(39): 8681–8686

    [256] Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for highefficiency photovoltaics. Science, 2016, 354(6308): 92–95

    [257] Ahmad K, Kumar P, Mobin S M. A two-step modified sequential deposition method-based Pb-free (CH3NH3)3Sb2I9 perovskite with improved open circuit voltage and performance. ChemElectro- Chem, 2020, 7(4): 946–950

    Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Frontiers of Optoelectronics, 2020, 13(3): 196
    Download Citation