• Nano-Micro Letters
  • Vol. 16, Issue 1, 173 (2024)
Ting-Ting Liu1,†, Qi Zheng1,†, Wen-Qiang Cao1, Yu-Ze Wang1..., Min Zhang2, Quan-Liang Zhao3 and Mao-Sheng Cao1,*|Show fewer author(s)
Author Affiliations
  • 1School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
  • 2Department of Physics, Beijing Technology and Business University, Beijing 100048, People’s Republic of China
  • 3School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01391-8 Cite this Article
    Ting-Ting Liu, Qi Zheng, Wen-Qiang Cao, Yu-Ze Wang, Min Zhang, Quan-Liang Zhao, Mao-Sheng Cao. In Situ Atomic Reconstruction Engineering Modulating Graphene-Like MXene-Based Multifunctional Electromagnetic Devices Covering Multi-Spectrum[J]. Nano-Micro Letters, 2024, 16(1): 173 Copy Citation Text show less
    References

    [1] Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016).

    [2] C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15, 13 (2022).

    [3] A. Xie, D. Sheng, W. Liu, Y. Chen, S. Cheng, Enhancing electromagnetic absorption performance of Molybdate@Carbon by metal ion substitution. J. Mater. Sci. Technol. 163, 92–100 (2023).

    [4] J. Yang, H. Wang, Y. Zhang, H. Zhang, J. Gu, Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 16, 31 (2023).

    [5] A. Xie, R. Guo, L. Wu, W. Dong, Anion-substitution interfacial engineering to construct C@MoS2 hierarchical nanocomposites for broadband electromagnetic wave absorption. J. Colloid Interface Sci. 651, 1–8 (2023).

    [6] X. Zhong, M.K. He, C.Y. Zhang, Y.Q. Guo, J.W. Hu, J.W. Gu, Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024).

    [7] A. Xie, Z. Ma, Z. Xiong, W. Li, L. Jiang et al., Conjugate ferrocene polymer derived magnetic Fe/C nanocomposites for electromagnetic absorption application. J. Mater. Sci. Technol. 175, 125–131 (2024).

    [8] H. Sun, R. Che, X. You, Y. Jiang, Z. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26, 8120–8125 (2014).

    [9] Y. Guo, F. Yin, Y. Li, G. Shen, J.-C. Lee, Incorporating wireless strategies to wearable devices enabled by a photocurable hydrogel for monitoring pressure information. Adv. Mater. 35, e2300855 (2023).

    [10] J.-C. Shu, M.-S. Cao, M. Zhang, X.-X. Wang, W.-Q. Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30, 1908299 (2020).

    [11] G.-H. Lee, G.S. Lee, J. Byun, J.C. Yang, C. Jang et al., Deep-learning-based deconvolution of mechanical stimuli with Ti3C2Tx MXene electromagnetic shield architecture via dual-mode wireless signal variation mechanism. ACS Nano 14, 11962–11972 (2020).

    [12] P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon Aerogel@Reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021).

    [13] J. Yan, Q. Zheng, S.-P. Wang, Y.-Z. Tian, W.-Q. Gong et al., Multifunctional organic-inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices. Adv. Mater. 35, e2300015 (2023).

    [14] Y. Li, J. Wu, P. Yang, L. Song, J. Wang et al., Multi-degree-of-freedom robots powered and controlled by microwaves. Adv. Sci. 9, 2203305 (2022).

    [15] J. Chen, Y. Wang, Y. Liu, Y. Tan, J. Zhang et al., Fabrication of macroporous magnetic carbon fibers via the cooperative etching-electrospinning technology toward ultra-light microwave absorption. Carbon 208, 82–91 (2023).

    [16] J. Zhao, H. Wang, Y. Li, Z. Wang, C. Fang et al., Construction of self-assembled bilayer core-shell V2O3 microspheres as absorber with superior microwave absorption performance. J. Colloid Interface Sci. 639, 68–77 (2023).

    [17] S.-H. Kim, S.-Y. Lee, Y. Zhang, S.-J. Park, J. Gu, Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci. 10, e2303104 (2023).

    [18] F. Pan, Y. Rao, D. Batalu, L. Cai, Y. Dong et al., Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 14, 140 (2022).

    [19] P. He, M.-S. Cao, W.-Q. Cao, J. Yuan, Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 13, 115 (2021).

    [20] M. Han, Y. Liu, R. Rakhmanov, C. Israel, M. Abu Saleh Tajin et al., Solution-processed Ti3C2Tx MXene antennas for radio-frequency communication. Adv. Mater. 33, 2003225 (2021).

    [21] Z. Liu, T. He, H. Sun, B. Huang, X. Li Layered, MXene heterostructured with In2O3 nanoparticles for ammonia sensors at room temperature. Sens. Actuat. B Chem. 365, 131918 (2022).

    [22] X.S. Li, X.F. Ma, H.K. Zhang, N. Xue, Q. Yao et al., Ambient-stable MXene with superior performance suitable for widespread applications. Chem. Eng. J. 455, 140635 (2023).

    [23] L. Cai, H. Jiang, F. Pan, H. Liang, Y. Shi et al., Linkage effect induced by hierarchical architecture in magnetic MXene-based microwave absorber. Small 20, e2306698 (2024).

    [24] C. Peng, X. Yang, Y. Li, H. Yu, H. Wang et al., Hybrids of two-dimensional Ti3C2 and TiO2 exposing{001}facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 8, 6051–6060 (2016).

    [25] R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 27, 5314–5323 (2015).

    [26] X. Li, X. Yin, M. Han, C. Song, H. Xu et al., Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 5, 4068–4074 (2017).

    [27] J.-X. Yang, W.-B. Yu, C.-F. Li, W.-D. Dong, L.-Q. Jiang et al., PtO nanodots promoting Ti3C2 MXene in situ converted Ti3C2/TiO2 composites for photocatalytic hydrogen production. Chem. Eng. J. 420, 129695 (2021).

    [28] A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., MXene materials: effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2, 1670068 (2016).

    [29] M. Zhang, C. Han, W.-Q. Cao, M.-S. Cao, H.-J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13, 27 (2020).

    [30] L.-H. Yao, J.-G. Zhao, Y.-C. Wang, M.-S. Cao, Manipulating electromagnetic response for tunable microwave absorption, electromagnetic interference shielding, and device. Carbon 212, 118169 (2023).

    [31] L. Chang, Y.-Z. Wang, X.-C. Zhang, L. Li, H.-Z. Zhai et al., Toward high performance microwave absorber by implanting La0.8CoO3 nanoparticles on rGO. J. Mater. Sci. Technol. 174, 176–187 (2024).

    [32] X.-X. Wang, Q. Zheng, Y.-J. Zheng, M.-S. Cao, Green EMI shielding: Dielectric/magnetic “genes” and design philosophy. Carbon 206, 124–141 (2023).

    [33] M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9, e2105553 (2022).

    [34] M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024).

    [35] Y. Zhu, T. Liu, L. Li, M. Cao, Multifunctional WSe2/Co3C composite for efficient electromagnetic absorption, EMI shielding, and energy conversion. Nano Res. 17, 1655–1665 (2024).

    [36] C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024).

    [37] M. Dashti, J. David Carey, Graphene microstrip patch ultrawide band antennas for THz communications. Adv. Funct. Mater. 28, 1705925 (2018).

    [38] M. Anas, M.M. Mustafa, D.G. Carey, A. Sarmah, J.J. LeMonte et al., Joule heating of carbon pixels for on-demand thermal patterning. Carbon 174, 518–523 (2021).

    [39] S.G. Kim, T.V. Tran, J.S. Lee, Iron oxide-immobilized porous carbon nanofiber-based radio frequency identification (RFID) tag sensor for detecting hydrogen sulfide. J. Ind. Eng. Chem. 112, 423–429 (2022).

    [40] M.F. Zhou, B. Liu, C.C. Hu, K.X. Song, Ultra-low permittivity MgF2 ceramics with high Qf values and their role as microstrip patch antenna substrates. Ceram. Int. 49, 369–374 (2023).

    [41] A.D. Yaghjian, S.R. Best, Impedance, bandwidth, and Q of antennas. IEEE Trans. Anntenas. Propag. 53, 1298–1324 (2005).

    [42] A. Lalbakhsh, M.U. Afzal, K.P. Esselle, S.L. Smith, All-metal wideband frequency-selective surface bandpass filter for TE and TM polarizations. IEEE Trans. Anntenas. Propag. 70, 2790–2800 (2022).

    [43] K.-D. Xu, Y. Liu, Millimeter-wave on-chip bandpass filter using complementary-broadside-coupled structure. IEEE Trans. Circ. Syst. II Express Briefs 70, 2829–2833 (2023).

    [44] Y. Feng, S. Fang, S. Jia, Z. Xu, Tri-layered stacked substrate integrated waveguide bandpass filter using non-resonant nodes excitation. IEEE Trans. Circ. Syst. II Express Briefs 69, 1004–1008 (2022).

    [45] W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13, 102 (2021).

    [46] Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022).

    [47] H. Yang, J. Zhou, Z. Duan, X. Liu, B. Deng et al., Amorphous TiO2 beats P25 in visible light photo-catalytic performance due to both total-internal-reflection boosted solar photothermal conversion and negative temperature coefficient of the forbidden bandwidth. Appl. Catal. B Environ. 310, 121299 (2022).

    [48] W. Jiao, L. Zhang, R. Yang, J. Ning, L. Xiao et al., Synthesis of monolayer carbon-coated TiO2 as visible-light-responsive photocatalysts. Appl. Mater. Today 27, 101498 (2022).

    Ting-Ting Liu, Qi Zheng, Wen-Qiang Cao, Yu-Ze Wang, Min Zhang, Quan-Liang Zhao, Mao-Sheng Cao. In Situ Atomic Reconstruction Engineering Modulating Graphene-Like MXene-Based Multifunctional Electromagnetic Devices Covering Multi-Spectrum[J]. Nano-Micro Letters, 2024, 16(1): 173
    Download Citation