• Photonics Research
  • Vol. 12, Issue 6, 1138 (2024)
Kewei Bian1, Zhenyu Li1, Yushuai Liu2,3,4, Sumei Xu1..., Xingyan Zhao1, Yang Qiu1, Yuan Dong1, Qize Zhong1, Tao Wu2,3,4, Shaonan Zheng1,* and Ting Hu1,5|Show fewer author(s)
Author Affiliations
  • 1School of Microelectronics, Shanghai University, Shanghai 201800, China
  • 2School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 3Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • 5e-mail: hu-t@shu.edu.cn
  • show less
    DOI: 10.1364/PRJ.517719 Cite this Article Set citation alerts
    Kewei Bian, Zhenyu Li, Yushuai Liu, Sumei Xu, Xingyan Zhao, Yang Qiu, Yuan Dong, Qize Zhong, Tao Wu, Shaonan Zheng, Ting Hu, "Demonstration of acousto-optical modulation based on a thin-film AlScN photonic platform," Photonics Res. 12, 1138 (2024) Copy Citation Text show less
    References

    [1] A. H. Safavi-Naeini, D. V. Thourhout, R. Baets. Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics. Optica, 6, 213-232(2019).

    [2] E. A. Kittlaus, W. M. Jones, P. T. Rakich. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photonics, 15, 43-52(2021).

    [3] M. Bass, Optical Society. Handbook of Optics(1995).

    [4] C. Huang, H. Shi, L. Yu. Acousto-optic modulation in silicon waveguides based on piezoelectric aluminum scandium nitride film. Adv. Opt. Mater., 10, 2102334(2022).

    [5] C. J. Sarabalis, R. V. Laer, R. N. Patel. Acousto-optic modulation of a wavelength-scale waveguide. Optica, 8, 477-483(2021).

    [6] Z. Yu, X. Sun. Gigahertz acousto-optic modulation and frequency shifting on etchless lithium niobate integrated platform. ACS Photon., 8, 798-803(2021).

    [7] L. Shao, N. Sinclair, J. Leatham. Integrated microwave acousto-optic frequency shifter on thin-film lithium niobate. Opt. Express, 28, 23728-23738(2020).

    [8] D. B. Sohn, G. Bahl. Direction reconfigurable nonreciprocal acousto-optic modulator on chip. APL Photon., 4, 126103(2019).

    [9] D. B. Sohn, O. E. Örsel, G. Bahl. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting. Nat. Photonics, 15, 822-827(2021).

    [10] H. Shi, C. Huang, L. Yu. Intramodal acousto-optic scattering of opto-piezomechanical device on aluminum nitride. J. Lightwave Technol., 41, 6348-6355(2023).

    [11] H. Tian, J. Liu, A. Siddharth. Magnetic-free silicon nitride integrated optical isolator. Nat. Photonics, 15, 828-836(2021).

    [12] E. A. Kittlaus, N. T. Otterstrom, P. Kharel. Non-reciprocal interband Brillouin modulation. Nat. Photonics, 12, 613-619(2018).

    [13] Y. Schrödel, C. Hartmann, J. Zheng. Acousto-optic modulation of gigawatt-scale laser pulses in ambient air. Nat. Photonics, 18, 54-59(2023).

    [14] G. Pillai, S.-S. Li. Controllable multichannel acousto-optic modulator and frequency synthesizer enabled by nonlinear MEMS resonator. Sci. Rep., 11, 10898(2021).

    [15] B. Li, Q. Lin, M. Li. Frequency–angular resolving LiDAR using chip-scale acousto-optic beam steering. Nature, 620, 316-322(2023).

    [16] I.-T. Chen, B. Li, S. Lee. Optomechanical ring resonator for efficient microwave-optical frequency conversion. Nat. Commun., 14, 7594(2023).

    [17] S. A. Tadesse, M. Li. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nat. Commun., 5, 5402(2014).

    [18] L. Shao, M. Yu, S. Maity. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 6, 1498-1505(2019).

    [19] Y. Yu, X. Sun. Surface acoustic microwave photonic filters on etchless lithium niobate integrated platform. CLEO, SW3L.3(2023).

    [20] N. Savage. Acousto-optic devices. Nat. Photonics, 4, 728-729(2010).

    [21] L. Wan, Z. Yang, W. Zhou. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light Sci. Appl., 11, 145(2022).

    [22] J. Liu, G. Huang, R. N. Wang. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 12, 2236(2021).

    [23] C. Xiang, J. Liu, J. Guo. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).

    [24] H. Tian, J. Liu, B. Dong. Hybrid integrated photonics using bulk acoustic resonators. Nat. Commun., 11, 3073(2020).

    [25] Z. Yang, M. Wen, L. Wan. Efficient acousto-optic modulation using a microring resonator on a thin-film lithium niobate–chalcogenide hybrid platform. Opt. Lett., 47, 3808-3811(2022).

    [26] I. Ansari, J. P. George, G. F. Feutmba. Light modulation in silicon photonics by PZT actuated acoustic waves. ACS Photon., 9, 1944-1953(2022).

    [27] M. M. De Lima, M. Beck, R. Hey. Compact Mach-Zehnder acousto-optic modulator. Appl. Phys. Lett., 89, 121104(2006).

    [28] I. M. Sopko, D. O. Ignatyeva, G. A. Knyazev. Efficient acousto-optical light modulation at the mid-infrared spectral range by planar semiconductor structures supporting guided modes. Phys. Rev. Appl., 13, 034076(2020).

    [29] W. Fu, Z. Shen, Y. Xu. Phononic integrated circuitry and spin–orbit interaction of phonons. Nat. Commun., 10, 2743(2019).

    [30] L. Cai, A. Mahmoud, M. Khan. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photon. Res., 7, 1003-1013(2019).

    [31] S. Kim, D. B. Sohn, C. W. Peterson. On-chip optical non-reciprocity through a synthetic Hall effect for photons. APL Photon., 6, 011301(2021).

    [32] R. Matloub, M. Hadad, A. Mazzalai. Piezoelectric Al1−xScxN thin films: a semiconductor compatible solution for mechanical energy harvesting and sensors. Appl. Phys. Lett., 102, 152903(2013).

    [33] K.-H. Kim, S. Oh, M. M. A. Fiagbenu. Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors. Nat. Nanotechnol., 18, 1044-1050(2023).

    [34] M. Akiyama, T. Kamohara, K. Kano. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater., 21, 593-596(2009).

    [35] Q. Wang, Y. Lu, S. Mishin. Design, fabrication, and characterization of scandium aluminum nitride-based piezoelectric micromachined ultrasonic transducers. J. Microelectromechanical Syst., 26, 1132-1139(2017).

    [36] M. A. Caro, S. Zhang, T. Riekkinen. Piezoelectric coefficients and spontaneous polarization of ScAlN. J. Phys. Condens. Matter, 27, 245901(2015).

    [37] S. Saada, S. Lakel, K. Almi. Optical, electronic and elastic properties of ScAlN alloys in WZ and ZB phases: prospective material for optoelectronics and solar cell applications. Superlattices Microstruct., 109, 915-926(2017).

    [38] M. Baeumler, Y. Lu, N. Kurz. Optical constants and band gap of wurtzite Al1−xScxN/Al2O3 prepared by magnetron sputter epitaxy for scandium concentrations up to x = 0.41. J. Appl. Phys., 126, 045715(2019).

    [39] H. Ichihashi, T. Yanagitani, M. Suzuki. Acoustic-wave velocities and refractive indices in an m-plane GaN single-crystal plate and c-axis-oriented ScAlN films measured by Brillouin scattering techniques. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 63, 717-725(2016).

    [40] S. Zhu, Q. Zhong, N. Li. Integrated ScAlN photonic circuits on silicon substrate. Conference on Lasers and Electro-Optics (CLEO)(2020).

    [41] K. Bian, Z. Li, X. Zhao. Integrated scandium-doped aluminum nitride microring resonators on 8-inch silicon wafers. Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM), 1-5(2023).

    [42] Y. Zang, L. Li, Z. Ren. Characterization of AlN thin film prepared by reactive sputtering. Surf. Interface Anal., 48, 1029-1032(2016).

    [43] D. B. Sohn, S. Kim, G. Bahl. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photonics, 12, 91-97(2018).

    [44] D. Dai, S. Wang. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications. Front. Optoelectron., 9, 450-465(2016).

    [45] E. A. Kittlaus, N. T. Otterstrom, P. T. Rakich. On-chip inter-modal Brillouin scattering. Nat. Commun., 8, 15819(2017).

    [46] O. Jafari, S. Zhalehpour, W. Shi. Mode-conversion-based silicon photonic modulator loaded by a combination of lateral and interleaved p-n junctions. Photon. Res., 9, 471-476(2021).

    [47] C. Huang, H. Shi, L. Yu. Piezoelectrically coupling surface acoustic waves to silicon waveguides. Opt. Open Prepr.(2023).

    [48] Q. Liu, H. Li, M. Li. Electromechanical Brillouin scattering in integrated optomechanical waveguides. Optica, 6, 778-785(2019).

    [49] M. Uehara, T. Mizuno, Y. Aida. Increase in the piezoelectric response of scandium-doped gallium nitride thin films sputtered using a metal interlayer for piezo MEMS. Appl. Phys. Lett., 114, 012902(2019).

    [50] L. Zhang, C. Cui, P.-K. Chen. Integrated-waveguide-based acousto-optic modulation with complete optical conversion. Optica, 11, 184-189(2024).

    [51] R. T. Smith, F. S. Welsh. Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys., 42, 2219-2230(1971).

    [52] E. Österlund, G. Ross, M. A. Caro. Stability and residual stresses of sputtered Wurtzite AlScN thin films. Phys. Rev. Mater., 5, 035001(2021).

    [53] Z. Luo, S. Shao, T. Wu. Characterization of AlN and AlScN film ICP etching for micro/nano fabrication. Microelectron. Eng., 242–243, 111530(2021).

    [54] D. Royer, E. Dieulesaint. Elastic Waves in Solids II: Generation, Acousto-Optic Interaction, Applications(1999).

    [55] J. H. Hines, D. C. Malocha. A simple transducer equivalent circuit parameter extraction technique. 1993 Proceedings IEEE Ultrasonics Symposium, 1, 173-177(1993).

    Kewei Bian, Zhenyu Li, Yushuai Liu, Sumei Xu, Xingyan Zhao, Yang Qiu, Yuan Dong, Qize Zhong, Tao Wu, Shaonan Zheng, Ting Hu, "Demonstration of acousto-optical modulation based on a thin-film AlScN photonic platform," Photonics Res. 12, 1138 (2024)
    Download Citation