• Journal of Advanced Dielectrics
  • Vol. 15, Issue 2, 2450020 (2025)
Aimad Belboukhari*, Souad Ait Saghir, Abderrahim Bakak, Said El-Jallal..., Khaled Ait Bentaleb, My Abdelaziz Koumina, Daoud Mezzane and Yaovi Gagou|Show fewer author(s)
DOI: 10.1142/S2010135X24500206 Cite this Article
Aimad Belboukhari, Souad Ait Saghir, Abderrahim Bakak, Said El-Jallal, Khaled Ait Bentaleb, My Abdelaziz Koumina, Daoud Mezzane, Yaovi Gagou. Efficient exploration of electronic and dielectric properties using advanced first-principles analysis grounded in modern theory of polarization: Application to PbTiO3[J]. Journal of Advanced Dielectrics, 2025, 15(2): 2450020 Copy Citation Text show less
References

[1] J.-M. Lihm, C.-H. Park. Reliable methods for seamless stitching of tight-binding models based on maximally localized Wannier functions. Phys. Rev. B, 99, 125117(2017). https://doi.org/10.1103/PhysRevB.99.125117

[2] R. Resta. Theory of the electric polarization in crystals. Ferroelectrics, 136, 51(1992).

[3] R. D. King-Smith, D. Vanderbilt. Theory of polarization of crystalline solids. Phys. Rev. B, 47, 1651(1993).

[4] D. Vanderbilt, R. D. King-Smith. Electric polarization as a bulk quantity and its relation to surface charge. Phys. Rev. B, 48, 4442(1993).

[5] N. A. Spaldin. A beginner’s guide to the modern theory of polarization. J. Solid State Chem., 2, 195(2012). https://doi.org/10.1016/j.jssc.2012.05.010

[6] M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A, 392, 45(1984). https://doi.org/10.1098/rspa.1984.0023

[7] N. Marzari, D. Vanderbilt. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B, 56, 12847(1997).

[8] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, D. Vanderbilt. Maximally localized generalized Wannier functions for composite energy bands. Rev. Mod. Phys., 84, 1419(2012). https://doi.org/10.1103/RevModPhys.84.1419

[9] H. Su, Y. Liu, Z. Wang, R. Zhang, F.-Q. Bai. Size effect of PbTiO3 on its charge separation ability. Mater. Today Commun., 36, 106488(2023). https://doi.org/10.1016/j.mtcomm.2023.106488

[10] K. F. Garrity, K. Choudhary. Fast and accurate prediction of material properties with three-body tight-binding model for the periodic table. Phys. Rev. Mater., 7, 044603(2023). https://doi.org/10.1103/PhysRevMaterials.7.044603

[11] L. G. Tejuca, J. L. Fierro. Properties and Applications of Perovskite-Type Oxides, 400(1992). https://doi.org/10.1201/9781482277258

[12] C. Liu, F. An, P. S. Gharavi, Q. Lu, J. Zha, C. Chen, L. Wang, X. Zhan, Z. Xu, Y. Zhang. Large-scale multiferroic complex oxide epitaxy with magnetically switched polarization enabled by solution processing. Natl. Sci. Rev., 7, 84(2020). https://doi.org/10.1201/9781482277258

[13] Y. Huan, X. Wang, J. Fang, L. Li. Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics. J. Eur. Ceram. Soc., 34, 1445(2014). https://doi.org/10.1201/9781482277258

[14] W. Luan, L. Gao, J. Guo. Size effect on dielectric properties of fine-grained BaTiO3 ceramics. Ceram. Int., 25, 727(1999). https://doi.org/10.1016/S0272-8842(99)00009-7

[15] Q. Jiang, X. Cui, M. Zhao. Size effects on Curie temperature of ferroelectric particles. Appl. Phys. A, 78, 703(2004). https://doi.org/10.1007/s00339-002-1959-6

[16] R. Mehta, B. Silverman, J. Jacobs. Depolarization fields in thin ferroelectric films. J. Appl. Phys., 44, 3379(1973). https://doi.org/10.1063/1.1662770

[17] K. Gupta, P. Mahadevan, P. Mavropoulos, M. Lezaic. Orbital-Ordering-Induced Ferroelectricity in SrCrO3. Phys. Rev. Lett., 111, 077601(2013). https://doi.org/10.1103/PhysRevLett.111.077601

[18] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett., 102, 039902(2009). https://doi.org/10.1103/PhysRevLett.100.136406

[19] P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas. Phys. Rev., 136, B864(1964). https://doi.org/10.1103/PhysRev.136.B864

[20] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçübenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter., 46, 22(2017). https://doi.org/10.1088/1361-648X/aa8f79

[21] H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 13, 5188(1976). http://dx.doi.org/10.1103/PhysRevB.13.5188

[22] A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, N. Marzari. An updated version of Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun., 185, 2309(2014). https://doi.org/10.1016/j.cpc.2007.11.016

[23] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J.-M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, J. R. Yates. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter., 32, 165902(2020). https://doi.org/10.48550/arXiv.1907.09788

[24] R. Sakuma. Symmetry-adapted Wannier functions in the maximal localization procedure. Phys. Rev. B, 87, 235109(2013). https://doi.org/10.1103/PhysRevB.87.235109

[25] D. Vanderbilt. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization, and Topological Insulators, 87(2018). https://doi.org/10.1017/9781316662205

[26] T. Yusufaly, D. Vanderbilt, S. Coh. Tight-binding formalism in the context of the PythTB package (2022). https://www.physics.rutgers.edu/pythtb/

[27] M. Taherinejad, K. F. Garrity, D. Vanderbilt. Wannier center sheets in topological insulators. Phys. Rev. B, 89, 115102(2014). https://doi.org/10.1103/PhysRevB.89.115102

[28] Y. Zhang, J. Sun, J. P. Perdew, X. Wu. Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA. Phys. Rev. B, 96, 035143(2017). https://doi.org/10.1103/PhysRevB.96.035143

[29] Y. Liu, G. Xu, C. Song, Z. Ren, G. Han, Y. Zheng. First-principles study of elastic properties in perovskite PbTiO3. Mater. Sci. Eng. A, 472, 269(2008). https://doi.org/10.1016/j.msea.2007.03.028

[30] J. Shi, I. Grinberg, X. Wang, A. M. Rappe. Atomic sublattice decomposition of piezoelectric response in tetragonal PbTiO3, BaTiO3, and KNbO3. Phys. Rev. B, 89, 094105(2014). https://doi.org/10.1103/PhysRevB.89.094105

[31] M. D. Kassa, N. G. Debelo, M. M. Woldemariam. Computational study of structural, elastic, electronic, phonon dispersion relation and thermodynamic properties of orthorhombic CaZrS3 for optoelectronic applications. Condens. Matter Phys., 26, 23701(2023). https://doi.org/10.5488/CMP.26.23701

[32] S. Kuma, M. M. Woldemariam. Structural, electronic, lattice dynamic, and elastic properties of SnTiO3 and PbTiO3 using density functional theory. Adv. Condens. Matter Phys., 2019, 23701(2023). https://doi.org/10.1155/2019/3176148

[33] J. J. Wang, F. Y. Meng, X. Q. Ma, M. X. Xu, L. Q. Chen. Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles. J. Appl. Phys., 108, 034107(2010). https://doi.org/10.1063/1.3462441

[34] M. Tarnaoui, N. Zaim, M. Kerouad, A. Zaim. Elastic, electronic and electrocaloric properties near room temperature in Mn-doped SnTiO3 from first-principles calculations. J. Phys. Chem. Solids, 46, 21995(2020). https://doi.org/10.1016/j.ceramint.2020.05.147

[35] K. Koepernik, O. Janson, Y. Sun, J. van den Brink. Symmetry conserving maximally projected Wannier functions. Phys. Rev. B, 107, 235135(2023). https://doi.org/10.1103/PhysRevB.107.235135

[36] N. Marzari, D. Vanderbilt. Maximally-localized Wannier functions in perovskites: Cubic BaTiO3. AIP Conf. Proc., 436, 146(1998). https://doi.org/10.1063/1.56269

[37] D. Vanderbilt, R. Resta. Quantum Electrostatics of Insulators: Polarization, Wannier Functions, and Electric Fields. Contemp. Concepts Condens. Matter Sci., 2, 139(2006). https://doi.org/10.1016/S1572-0934(06)02005-1

[38] R. Resta, D. Vanderbilt. Physics of Ferroelectrics, 105, 31-68(2007).

[39] L. D. Filip, N. Plugaru, L. Pintilie. Polarization branches and optimization calculation strategy applied to ABO3 ferroelectrics. Model. Simul. Mater. Sci. Eng., 27, 045008(2019). https://doi.org/10.1088/1361-651X/ab146e

[40] K. M. Rabe, C. H. Ahn, J.-M. Triscone. Physics of Ferroelectrics, 105, 1-30(2007). https://doi.org/10.1007/978-3-540-34591-6_1

[41] D. Vanderbilt. Berry-phase theory of proper piezoelectric response. J. Phys. Chem. Solids, 61, 147(20070). https://doi.org/10.48550/arXiv.cond-mat/9903137

[42] A. Shafique, Y.-H. Shin. The effect of non-analytical corrections on the phononic thermal transport monolayers. Sci. Rep., 10, 1093(2020). https://doi.org/10.1038/s41598-020-57644-0

[43] P. Ghosez, J.-P. Michenaud, X. Gonze. Dynamical atomic charges: The case of ABO3 compounds. Phys. Rev. B, 58, 6224(1998). https://doi.org/10.1103/PhysRevB.58.6224

[44] L. Bellaiche. Piezoelectricity of ferroelectric perovskites from first principles. Curr. Opin. Solid State Mater. Sci., 6, 19(2002). https://doi.org/10.1016/S1359-0286(02)00017-7

[45] N. Jaykhedkar, N. Tripathy, V. Shah, B. Pujari, S. Premkumar. A comprehensive study of pressure dependent phase transitions in ferroelectric PbTiO3, PbZrO3 and BaTiO3. Mater. Chem. Phys., 254, 123545(2020). https://doi.org/10.1016/j.matchemphys.2020.123545

[46] Z. Li, M. Grimsditch, C. M. Foster, S.-K. Chan. Dielectric and elastic properties of ferroelectric materials at elevated temperature. J. Phys. Chem. Solids, 57, 1433(1996). https://doi.org/10.1016/0022-3697(96)00009-1

[47] G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, N. Marzari. BoltzWann: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis. Comput. Phys. Commun., 185, 422(2014). https://doi.org/10.1016/j.cpc.2013.09.015

[48] Y. Zhou, K. M. Rabe, D. Vanderbilt. Surface polarization and edge charges. Phys. Rev. B, 92, 041102(R)(2015). https://doi.org/10.1103/PhysRevB.92.041102

[49] E. A. Martínez, J. I. B. Fínez, F. Y. Bruno. BinPo: An open-source code to compute the band structure of two-dimensional electron systems. Comput. Phys. Commun., 284, 108595(2023). https://doi.org/10.1016/j.cpc.2022.108595

[50] H. Mamori, A. Al Shami, L. Attou, A. El Kenz, A. Benyoussef, A. Taleb, A. El Fatimy, O. Mounkachi. Layer engineering in optoelectronic and photonic properties of single and few layer phosphorene using first-principles calculations. RSC Adv., 14, 608(2024). https://doi.org/10.1039/D3RA06628B

[51] B. Meyer, J. Padilla, D. Vanderbilt. Theory of PbTiO3, BaTiO3 and SrTiO3 surfaces. Farad. Disc., 114, 395405(1999). https://doi.org/10.1039/a903029h

Aimad Belboukhari, Souad Ait Saghir, Abderrahim Bakak, Said El-Jallal, Khaled Ait Bentaleb, My Abdelaziz Koumina, Daoud Mezzane, Yaovi Gagou. Efficient exploration of electronic and dielectric properties using advanced first-principles analysis grounded in modern theory of polarization: Application to PbTiO3[J]. Journal of Advanced Dielectrics, 2025, 15(2): 2450020
Download Citation