• Photonics Research
  • Vol. 11, Issue 11, 1934 (2023)
Pingping Min1, Zicheng Song1, Tianyu Wang2, Victor G. Ralchenko1,3..., Yurong He2 and Jiaqi Zhu1,*|Show fewer author(s)
Author Affiliations
  • 1National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
  • 2School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
  • 3Prokhorov General Physics Institute of Russian Academy of Sciences, Moscow 119991, Russia
  • show less
    DOI: 10.1364/PRJ.498640 Cite this Article Set citation alerts
    Pingping Min, Zicheng Song, Tianyu Wang, Victor G. Ralchenko, Yurong He, Jiaqi Zhu, "Design strategy of a high-performance multispectral stealth material based on the 3D meta-atom," Photonics Res. 11, 1934 (2023) Copy Citation Text show less
    References

    [1] G. A. Rao, S. P. Mahulikar. Integrated review of stealth technology and its role in airpower. Aeronaut. J., 106, 629-641(2002).

    [2] E. F. Knott, J. F. Shaeffer, M. T. Tuley. Radar Cross Section(2004).

    [3] T. Liu, Y. Meng, H. Ma, C. Xu, X. Wang, S. Huang, S. Zhao, L. Zheng, S. Qu. Simultaneous reduction of microwave reflection and infrared emission enabled by a phase gradient metasurface. Opt. Express, 29, 35891-35899(2021).

    [4] N. Lee, J. S. Lim, I. Chang, H. M. Bae, J. Nam, H. H. Cho. Flexible assembled metamaterials for infrared and microwave camouflage. Adv. Opt. Mater., 10, 2200448(2022).

    [5] Y.-Z. Wang, H.-X. Xu, C.-H. Wang, M.-Z. Wang, S.-J. Wang. Research progress of electromagnetic metamaterial absorbers. Acta Phys. Sinica, 69, 134101(2020).

    [6] Q. Yuan, J. M. Jiang, Y. F. Li, C. L. Xu, Y. Cheng, L. X. Jiang, Z. B. Zhu, Z. Qin, H. Wang, J. F. Wang, H. Ma, S. B. Qu. The compatible method of designing the transparent ultra-broadband radar absorber with low infrared emissivity. Infrared Phys. Technol., 123, 104114(2022).

    [7] H. Y. Li, H. Yuan, F. Costa, Q. S. Cao, W. Wu, A. Monorchio. Optically transparent water-based wideband switchable radar absorber/reflector with low infrared radiation characteristics. Opt. Express, 29, 42863-42875(2021).

    [8] H. L. Lv, G. B. Ji, X. G. Li, X. F. Chang, M. Wang, H. G. Zhang, Y. W. Du. Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method. J. Magn. Magn. Mater., 374, 225-229(2015).

    [9] C. A. Stergiou, G. Litsardakis. Y-type hexagonal ferrites for microwave absorber and antenna applications. J. Magn. Magn. Mater., 405, 54-61(2016).

    [10] F. Ren, G. M. Zhu, P. G. Ren, K. Wang, X. P. Cui, X. G. Yan. Cyanate ester resin filled with graphene nanosheets and CoFe2O4 reduced graphene oxide nanohybrids as a microwave absorber. Appl. Surf. Sci., 351, 40-47(2015).

    [11] Z. Y. Zhang, M. Z. Xu, X. F. Ruan, J. F. Yan, J. N. Yun, W. Zhao, Y. N. Wang. Enhanced radar and infrared compatible stealth properties in hierarchical SnO2@ZnO nanostructures. Ceram. Int., 43, 3443-3447(2017).

    [12] P. Yu, L. V. Besteiro, Y. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, Z. Wang. Broadband metamaterial absorbers. Adv. Opt. Mater., 7, 1800995(2018).

    [13] R. H. Fan, B. Xiong, R. W. Peng, M. Wang. Constructing metastructures with broadband electromagnetic functionality. Adv. Mater., 32, 1904646(2020).

    [14] P. P. Min, Z. C. Song, L. Yang, B. Dai, J. Q. Zhu. Transparent ultrawideband absorber based on simple patterned resistive metasurface with three resonant modes. Opt. Express, 28, 19518-19530(2020).

    [15] C. M. Watts, X. Liu, W. J. Padilla. Metamaterial electromagnetic wave absorbers. Adv. Mater., 24, OP98-OP120(2012).

    [16] B. X. Wang, C. Xu, G. Duan, W. Xu, F. Pi. Review of broadband metamaterial absorbers: from principles, design strategies, and tunable properties to functional applications. Adv. Funct. Mater., 33, 2213818(2023).

    [17] S. C. Song, X. L. Ma, M. B. Pu, X. Li, Y. H. Guo, P. Gao, X. G. Luo. Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber. Photonics Res., 6, 492-497(2018).

    [18] Z. C. Song, P. Min, L. Yang, J. Zhu, F. Lin. Wideband diffusion metabsorber for perfect scattering field reduction. Photonics Res., 10, 1361-1366(2022).

    [19] Y. Han, W. Che, X. Xiu, W. Yang, C. Christopoulos. Switchable low-profile broadband frequency-selective rasorber/absorber based on slot arrays. IEEE Trans. Antennas Propag., 65, 6998-7008(2017).

    [20] Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, L. Zhou. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Adv. Opt. Mater., 8, 1901548(2020).

    [21] Z. Luo, X. Ren, L. Zhou, Y. Chen, Q. Cheng, H. F. Ma, T. J. Cui. A high-performance nonlinear metasurface for spatial-wave absorption. Adv. Funct. Mater., 32, 2109544(2022).

    [22] Z. Luo, X. Shan, X. Ren, K. Wu, Y. Chen, L. Hong, H. F. Ma, Q. Cheng, T. J. Cui. Active metasurface absorber for intensity-dependent surface-wave shielding. IEEE Trans. Antennas Propag., 71, 5795-5804(2023).

    [23] J. Jung, H. Park, J. Park, T. Chang, J. Shin. Broadband metamaterials and metasurfaces: a review from the perspectives of materials and devices. Nanophotonics, 9, 3165-3196(2020).

    [24] S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, C. R. Simovski. Metasurfaces: from microwaves to visible. Phys. Rep., 634, 1-72(2016).

    [25] Y. I. Abdulkarim, A. Mohanty, O. P. Acharya, B. Appasani, M. S. Khan, S. K. Mohapatra, F. F. Muhammadsharif, J. Dong. A review on metamaterial absorbers: microwave to optical. Front. Phys., 10, 893791(2022).

    [26] S. M. Zhong, L. J. Wu, T. J. Liu, J. F. Huang, W. Jiang, Y. G. Ma. Transparent transmission-selective radar-infrared bi-stealth structure. Opt. Express, 26, 16466-16476(2018).

    [27] C. Zhang, X. Wu, C. Huang, J. Peng, C. Ji, J. Yang, Y. Huang, Y. Guo, X. Luo. Flexible and transparent microwave–infrared bistealth structure. Adv. Mater. Technol., 4, 1900063(2019).

    [28] Y. Ma, L. H. Shi, J. B. Wang, L. Y. Zhu, Y. Z. Ran, Y. C. Liu, J. Li. A transparent and flexible metasurface with both low infrared emission and broadband microwave absorption. J. Mater. Sci. –Mater. Electron., 32, 2001-2010(2021).

    [29] S. N. Huang, Q. Fan, C. L. Xu, B. K. Wang, J. F. Wang, B. Y. Yang, C. H. Tian, Z. Meng. Multiple working mechanism metasurface with high optical transparency, low infrared emissivity and microwave reflective reduction. Infrared Phys. Technol., 111, 103524(2020).

    [30] Z. Q. Gao, C. L. Xu, X. X. Tian, J. F. Wang, H. H. Zhang, S. B. Qu, Q. Fan. Multifunctional ultra-thin metasurface with low infrared emissivity, microwave absorption and high optical transmission. Opt. Commun., 500, 127327(2021).

    [31] T. Xiao, C. H. Tian, C. L. Xu, Z. Q. Gao. Integrated design of optically transparent composite for low infrared emission and wideband microwave absorption metasurface. Acta Photon. Sinica, 51, 0151117(2022).

    [32] C. L. Xu, B. K. Wang, M. B. Yan, Y. Q. Pang, Y. Y. Meng, W. J. Wang, J. F. Wang, Q. Fan, S. B. Qu. An optically transparent sandwich structure for radar-infrared bi-stealth. Infrared Phys. Technol., 105, 103108(2020).

    [33] P. Min, Z. Song, L. Yang, V. G. Ralchenko, J. Zhu. Multispectral meta-film design: simultaneous realization of wideband microwave absorption, low infrared emissivity, and visible transparency. Opt. Express, 30, 32317-32332(2022).

    [34] A. K. Zadeh, A. Karlsson. Capacitive circuit method for fast and efficient design of wideband radar absorbers. IEEE Trans. Antennas Propag., 57, 2307-2314(2009).

    [35] Y. Zheng, K. Chen, T. Jiang, J. Zhao, Y. Feng. Multi-octave microwave absorption via conformal metamaterial absorber with optical transparency. J. Phys. D, 52, 335101(2019).

    [36] H. T. Chen. Interference theory of metamaterial perfect absorbers. Opt. Express, 20, 7165-7172(2012).

    [37] C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Y. Dai, T. C. Guo, J. Liang, G. Y. Xu, Q. Cheng, T. J. Cui. An ultralight and thin metasurface for radar-infrared bi-stealth applications. J. Phys. D, 50, 444002(2017).

    [38] J. B. Sun, L. Y. Liu, G. Y. Dong, J. Zhou. An extremely broad band metamaterial absorber based on destructive interference. Opt. Express, 19, 21155-21162(2011).

    [39] K. Gao, X. Cao, J. Gao, T. Li, H. Yang, S. Li. Ultrawideband metamaterial absorber for oblique incidence using characteristic mode analysis. Photonics Res., 10, 2751-2759(2022).

    [40] Z. Song, J. Zhu, L. Yang, P. Min, F. H. Lin. Wideband metasurface absorber (metabsorber) using characteristic mode analysis. Opt. Express, 29, 35387-35399(2021).

    [41] Q. Guo, J. Su, Z. Li, J. Song, Y. Guan. Miniaturized-element frequency-selective rasorber design using characteristic modes analysis. IEEE Trans. Antennas Propag., 68, 6683-6694(2020).

    [42] R. Zhu, J. Wang, J. Jiang, C. Xu, C. Liu, Y. Jia, S. Sui, Z. Zhang, T. Liu, Z. Chu, J. Wang, T. J. Cui, S. Qu. Machine-learning-empowered multispectral metafilm with reduced radar cross section, low infrared emissivity, and visible transparency. Photonics Res., 10, 1146-1156(2022).

    [43] P. P. Min, Z. C. Song, L. Yang, V. G. Ralchenko, J. Q. Zhu. Optically transparent flexible broadband metamaterial absorber based on topology optimization design. Micromachines, 12, 1419(2021).

    [44] R. Zhu, Z. Zhang, J. Wang, C. Xu, S. Sui, X. Wang, T. Liu, Y. Zhu, L. Zhang, J. Wang, S. Qu. Genetic-algorithm-empowered metasurface design: simultaneous realization of high microwave frequency-selection and low infrared surface-emissivity. Opt. Express, 29, 20150-20159(2021).

    [45] D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, J. Guan. Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators. Adv. Opt. Mater., 5, 1700109(2017).

    [46] C. Zhang, Q. Cheng, J. Yang, J. Zhao, T. J. Cui. Broadband metamaterial for optical transparency and microwave absorption. Appl. Phys. Lett., 110, 143511(2017).

    [47] C. Zhang, J. Yang, W. Cao, W. Yuan, J. Ke, L. Yang, Q. Cheng, T. Cui. Transparently curved metamaterial with broadband millimeter wave absorption. Photonics Res., 7, 478-485(2019).

    [48] Z. C. Song, P. Min, L. Yang, J. Zhu, F. Lin. A bilateral coding metabsorber using characteristic mode analysis. IEEE Antennas Wireless Propag. Lett., 21, 1228-1232(2022).

    [49] P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva. Searching for better plasmonic materials. Laser Photonics Rev., 4, 795-808(2010).

    [50] S. M. Zhong, W. Jiang, P. P. Xu, T. J. Liu, J. F. Huang, Y. G. Ma. A radar-infrared bi-stealth structure based on metasurfaces. Appl. Phys. Lett., 110, 063502(2017).

    [51] Z. Meng, C. Tian, C. Xu, J. Wang, X. Li, S. Huang, Q. Fan, S. Qu. Optically transparent coding metasurface with simultaneously low infrared emissivity and microwave scattering reduction. Opt. Express, 28, 27774-27784(2020).

    [52] T. Liu, Y. Meng, H. Ma, R. Zhu, S. Huang, C. Xu, L. Zhang, J. Wang, S. Qu. Broadband surface wave coupler with low infrared emission and microwave reflection. Opt. Express, 29, 35490-35500(2021).

    [53] S. D. Gedney. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. IEEE Trans. Antennas Propag., 44, 1630-1639(1996).

    [54] D. M. Kingsland, J. Gong, J. L. Volakis, J. F. Lee. Performance of an anisotropic artificial absorber for truncating finite-element meshes. IEEE Trans. Antennas Propag., 44, 975-982(1996).

    [55] D. Ye, Z. Wang, Z. Wang, K. Xu, B. Zhang, J. Huangfu, C. Li, L. Ran. Towards experimental perfectly-matched layers with ultra-thin metamaterial surfaces. IEEE Trans. Antennas Propag., 60, 5164-5172(2012).

    [56] L. D. Landau, E. M. Lifshits, L. P. Pitaevskii. Electrodynamics of Continuous Media(1984).

    [57] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech., 47, 2075-2084(1999).

    [58] J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 76, 4773-4776(1996).

    [59] D. M. Pozar. Microwave Engineering(1998).

    [60] X. X. Tan, J. Chen, J. X. Li. A thin and optically transparent infrared-radar compatible stealth structure with low emissivity and broadband absorption. J. Phys. D, 55, 075104(2022).

    [61] C. L. Xu, Y. Y. Meng, J. F. Wang, M. B. Yan, W. J. Wang, J. M. Jiang, S. B. Qu. Optically transparent hybrid metasurfaces for low infrared emission and wideband microwave absorption. Acta Photon. Sinica, 50, 0416001(2021).

    [62] Z. Gao, C. Xu, X. Tian, J. Wang, C. Tian, B. Yang, S. Qu, Q. Fan. Ultra-wideband flexible transparent metamaterial with wide-angle microwave absorption and low infrared emissivity. Opt. Express, 29, 22108-22116(2021).

    [63] X. Chen, S. Nie, W. Guo, F. Fei, W. Su, W. Gu, Z. Cui. Printable high-aspect ratio and high-resolution Cu grid flexible transparent conductive film with figure of merit over 80000. Adv. Electron. Mater., 5, 1800991(2019).

    [64] T. Inagaki, Y. Okamoto. Surface temperature measurement near ambient conditions using infrared radiometers with different detection wavelength bands by applying a grey-body approximation: estimation of radiative properties for non-metal surfaces. NDT&E Int., 29, 363-369(1996).

    Pingping Min, Zicheng Song, Tianyu Wang, Victor G. Ralchenko, Yurong He, Jiaqi Zhu, "Design strategy of a high-performance multispectral stealth material based on the 3D meta-atom," Photonics Res. 11, 1934 (2023)
    Download Citation