• Frontiers of Optoelectronics
  • Vol. 8, Issue 3, 329 (2015)
Abbas GHADIMI* and Alireza AHADPOUR SHAL
Author Affiliations
  • Department of Electrical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
  • show less
    DOI: 10.1007/s12200-015-0476-0 Cite this Article
    Abbas GHADIMI, Alireza AHADPOUR SHAL. distributed feedback laser;transfer matrix method (TMM);transversal and lateral mode[J]. Frontiers of Optoelectronics, 2015, 8(3): 329 Copy Citation Text show less
    References

    [1] Dumke W P. Interband transitions and maser action. Physical Review, 1962, 127(5): 1559–1563

    [2] Hall R N, Fenner G E, Kingsley J D, Soltys T J, Carlson R O. Coherent light emission from GaAs junctions. Physical Review Letters, 1962, 9(9): 366–368

    [3] Nathan M I, Dumk W P, Burns G, Dill F H, Lasher G. Stimulated emission of radiation from GaAs p-n junctions. Applied Physics Letters, 1962, 1(3): 62–64

    [4] Quist TM, Rediker R H, Keyes R J, KragWE, Lax B, Mcwhorter A L, Zeigler H J. Semiconductor maser of GaAs. Applied Physics Letters, 1962, 1(4): 91–92

    [5] Holonyak N, Bevacqua S F. Coherent (visible) light emission from Ga(As1 – xPx) junctions. Applied Physics Letters, 1962, 1(4): 82–84

    [6] Born M, Wolf E. Principle of Optics. 6th ed. Oxford: Pergamon Press, 1985, Section 7.6.2

    [7] Hayashi I, Panish M, Foy F. A low-threshold room-temperature injection laser. IEEE Journal of Quantum Electronics, 1969, 5(4): 211–212

    [8] Kressel H, Nelson H. Close confinement gallium arsenide p-n junction laser with reduced optical loss at room temperature. RCA Review, 1969, 30: 106–113

    [9] Hayashi I, Panish MB. GaAs-GaxAl1 – x As heterostructure injection lasers which exhibit low thresholds at room temperature. Journal of Applied Physics, 1970, 41(1): 150–163

    [10] Alferov Z I, Andreev V M, Korolkov V I, Portnoi E L, Tretyako D N. Injection properties of n-AlxGa1 – x As p-GaAs heterojunctions. Soviet Physics Semiconductors, 1969, 2(7): 843–845

    [11] Hayashi I, Panish M B, Foy P W, Sumski S. Junction lasers which operate continuously at room temperature. Applied Physics Letters, 1970, 17(3): 109–111

    [12] Alferov Z I, Andreev V M, Garbuzov D Z, Zhilyaev Y V, Morozov E P, Portnoi E L, Triofim V G. Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature. Soviet Physics Semiconductors, 1971, 4(9): 1573–1575

    [13] Ripper J E, Dyment J C, D’Asaro L A, Paoli T L. Stripe-geometry double heterostructure junction lasers: mode structure and CW operation above room temperature. Applied Physics Letters, 1971, 18(4): 155–157

    [14] Burnham R D, Scifres D R. Etched buried heterostructure GaAs/ GaAlAs injection lasers. Applied Physics Letters, 1975, 27(9): 510– 512

    [15] Kaminow I P, Stulz LW, Ko J S, Miller B I, Feldman R D, Dewinter J C, Pollack M A. Low threshold ridge waveguide laser at 1.55 μm. Electronics Letters, 1983, 19(21): 877–879

    [16] Lee T P, Burrus C A, Miller B I, Logan R A. AlxGa1 – x As doubleheterostructure rib-waveguide injection laser. IEEE Journal of Quantum Electronics, 1975, 11(7): 432–435

    [17] Hill D R. 140 Mbit/s optical fiber field demonstration systems. In: Sandbank C P, ed. Optical Fiber Communication Systems. Chichester: John Wiley & Sons, 1980

    [18] Zah C E, Pathk B, Favire F J, Pathak B, Bhat R, Caneau C, Lin P S D, Gozdz A S, Andreadakis N C, Koza M A, Lee T P. Monolithic integration of multiwavelength compressive-strained multiquantumwell distributed-feedback laser array with star coupler and optical amplifiers. Electronics Letters, 1992, 28(25): 2361–2362

    [19] YoungM G, Koren U, Miller B I, Chien M, KochT L, Tennant DM, Feder K, Dreyer K, Raybon G. Six wavelength laser array with integrated amplifier and modulator. Electronics Letters, 1995, 31 (21): 1835–1836

    [20] Katoh Y, Kunii T, Matsui Y, Kamijoh T. Four-wavelength DBR laser array with waveguide couplers fabricated using selective MOVPE growth. Optical and Quantum Electronics, 1996, 28(5): 533–540

    [21] Ghafouri-Shiraz H, Lo B S K. Distributed feedback laser diodes. Chichester: John-Wiley & Sons, 1996, chapter 1

    [22] Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties. IEEE Journal of Quantum Electronics, 1980, 16(3): 347–355

    [23] MatthewsM R, CameronK H, WyattR, DevlinW J. Packaged frequency-stable tunable 20 kHz linewidth 1.5 μm InGaAsP external cavity laser. Electronics Letters, 1985, 21(3): 113–115

    [24] Tsang W T. The cleaved coupled cavity (C3) laser. In: Semiconductors and semimetals. New York: Academic Press, 1985, 22(B), chapter 5

    [25] Coldren L A, Koch T L. Analysis and design of coupled-cavity lasers-Parts 1: threshold gain analysis and design guidelines. IEEE Journal of Quantum Electronics, 1984, 20(6): 659–670

    [26] TsangWT, Olsson N A, Linke R A, Logan R A. 1.5 μm wavelength GaInAsP C3 lasers: single frequency operation and wideband frequency tuning. Electronics Letters, 1983, 19(11): 415–417

    [27] Nakamura M, Yariv A, Yen H W, Somekh S, Garvin H L. Optically pumped GaAs surface laser with corrugation feedback. Applied Physics Letters, 1973, 22(10): 515–516

    [28] Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers. Journal of Applied Physics, 1972, 43(5): 2327– 2335

    [29] Nakamura M, Yariv A, Yen H W, Garmire E, Somekh S, Garvin H L. Laser oscillation in epitaxial GaAs waveguides with corrugation feedback. Applied Physics Letters, 1973, 23(5): 224–225

    [30] Scifres D, Burnham R, Streifer W. A distributed feedback single heterojunction diode laser. IEEE Journal of Quantum Electronics, 1974, 10(9): 790–791

    [31] Casey H C, Somekh S, Ilegems M. Room-temperature operation of low-threshold separate-confinement heterostructure injection laser with distributed feedback. Applied Physics Letters, 1975, 27(3): 142–144

    [32] Utaka K, Akiba S, Sakai K, Matsushima Y. Room-temperature CW operation of distributed-feedback buried heterostructure InGaAsPInP laser emitting at 1.57 μm. Electronics Letters, 1981, 17(25–26): 961–963

    [33] Uematsu Y, Okuda H, Kinoshita J. Room temperature CW operation of 1.3 μm distributed feedback GaInAsP/InP lasers. Electronics Letters, 1982, 18(20): 857–858

    [34] Streifer W, Burnham R, Scifres D R. Effect of external reflectors on longitudinal modes of distributed feedback lasers. IEEE Journal of Quantum Electronics, 1975, 11(4): 154–161

    [35] Zhou P, Lee G S. Chirped grating l/4-shifted distributed feedback laser with uniform longitudinal field distribution. Electronics Letters, 1990, 26(20): 1660–1661

    [36] Utaka K, Akiba S, Sakai K, Matsushima Y. λ/4-shifted InGaAsP DFB laser by simultaneous holographic exposure of positive and negative photoresists. Electronics Letters, 1984, 20(24): 1008–1010

    [37] Agrawal G P, Geusic J E, Anthony P J. Distributed feedback lasers with multiple phase-shift regions. Applied Physics Letters, 1988, 53 (3): 178–179

    [38] Thijs P J A, Tiemeijer L F, Binsma J JM, Van D T. Progress in longwavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers. IEEE Journal of Quantum Electronics, 1994, 30(2): 477–499

    [39] Morthier G, Vankwikelberge P, David K, Baets R. Improved performance of AR-coated DFB lasers for the introduction of gain coupling. IEEE Photonics Technology Letters, 1990, 2(3): 170–172

    [40] Alam M F, Karim M A, Islam S. Effects of structural parameters on the external optical feedback sensitivity in DFB semiconductor lasers. IEEE Journal of Quantum Electronics, 1997, 33(3): 424–433

    [41] Yu S F. Dynamic behavior of double-tapered-waveguide distributed feedback lasers. IEEE Journal of Quantum Electronics, 1997, 33(8): 1260–1267

    [42] Fessant T. Multisection distributed feedback lasers with a phaseadjustment region and a nonuniform coupling coefficient for high immunity against spatial hole burning. Optics Communications, 1998, 148(1–3): 171–179

    [43] Kinoshita J. Analysis of radiation mode effects on oscillating properties of DFB lasers. IEEE Journal of Quantum Electronics, 1999, 35(11): 1569–1583

    [44] Winick K A. Longitudinal mode competition in chirped grating distributed feedback lasers. IEEE Journal of Quantum Electronics, 1999, 35(10): 1402–1411

    [45] Peral E, Yariv A. Measurement and characterization of laser chirp of multiquantum-well distributed-feedback lasers. IEEE Photonics Technology Letters, 1999, 11(3): 307–309

    [46] Hsu A, Chuang S, Fang W, Adams L, Nykolak G, Tanbun-Ek T. A wavelength-tunable curved waveguide DFB laser with an integrated modulator. IEEE Journal of Quantum Electronics, 1999, 35(6): 961– 969

    [47] Shams-Zadeh-Amiri A M, Li X, Huan W. Above-threshold analysis of second-order circular-grating DFB lasers. IEEE Journal of Quantum Electronics, 2000, 36(3): 259–267

    [48] Fernandes C F. Hole-burning corrections in the stationary analysis of DFB laser diodes. Materials Science and Engineering B, 2000, 74 (1–3): 75–79

    [49] Wang J Y, Cada M. Analysis and optimum design of distributed feedback lasers using coupled-power theory. IEEE Journal of Quantum Electronics, 2000, 36(1): 52–58

    [50] Morrison G B, Cassidy D T, Bruce D M. Facet phases and subthreshold spectra of DFB lasers: spectral extraction, features, explanations and verification. IEEE Journal of Quantum Electronics, 2001, 37(6): 762–769

    [51] Agrawal G P, Dutta N K. Semiconductor Lasers. 2nd ed. New York: Van Nostrand Reinhold, 1993

    [52] Adams M J, Wyatt R. An Introduction to Optical Waveguide. London: John Wiley & Sons, 1981

    [53] Nakano Y, Luo Y, Tada K. Facet reflection independent, single longitudinal mode oscillation in a GaAlAs/GaAs distributed feedback laser equipped with a gain-coupling mechanism. Applied Physics Letters, 1989, 55(16): 1606–1608

    [54] Morthier G, Baets R. Modelling of distributed feedback lasers. In: Compound Semiconductor Device Modelling. London: Springer- Verlag, 1993, chapter 7, 119–148

    [55] Vankwikelberge P, Morthier G, Baets R. CLADISS-a longitudinal multimode model for the analysis of the static, dynamic, and stochastic behavior of diode lasers with distributed feedback. IEEE Journal of Quantum Electronics, 1990, 26(10): 1728–1741

    [56] Morthier G. An accurate rate-equation description for DFB lasers and some interesting solutions. IEEE Journal of Quantum Electronics, 1997, 33(2): 231–237

    [57] Henry C H. Theory of the linewidth of semiconductor lasers. IEEE Journal of Quantum Electronics, 1982, 18(2): 259–264

    [58] Pan X, Olesen H, Tromborg B. Spectral linewidth of DFB lasers including the effects of spatial holeburning and nonuniform current injection. IEEE Photonics Technology Letters, 1990, 2(5): 312–315

    [59] Henry C H. Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers. Journal of Lightwave Technology, 1986, 4(3): 288–297

    [60] Sugimura A, Patzak E, Meissner P. Homogenous linewidth and linewidth enhancement factor for a GaAs semiconductor laser. Journal of Physics D: Applied Physics, 1986, 19(1): 7–16

    [61] Kikuchi K, Okoshi T. Measurement of FM noise, AM noise, and field spectra of 1.3 μm InGaAsP DFB lasers and determination of the linewidth enhancement factor. IEEE Journal of Quantum Electronics, 1985, 21(11): 1814–1818

    [62] Vahala K, Chiu L C, Margalit S, Yariv A. On the linewidth enhancement factor α in semiconductor injection lasers. Applied Physics Letters, 1983, 42(8): 631–633

    [63] Fujise M. Spectral linewidth estimation of a 1.5 μm range InGaAsP/ InP distributed feedback laser. IEEE Journal of Quantum Electronics, 1986, 22(3): 458–462

    [64] Kojima K, Kyuma K, Nakayama T. Analysis of spectral linewidth of distributed feedback laser diodes. Journal of Lightwave Technology, 1985, 3(5): 1048–1055

    [65] Tromborg B, Olesen H, Pan X, Saito S. Transmission line description of optical feedback and injection locking for Fabry- Perot and DFB lasers. IEEE Journal of Quantum Electronics, 1987, 23(11): 1875–1889

    [66] Makino T. Transfer-matrix formulation of spontaneous emission noise of DFB semiconductor lasers. Journal of Lightwave Technology, 1991, 9(1): 84–91

    [67] Makino T, Glinski J. Transfer matrix analysis of the amplified spontaneous emission of DFB semiconductor laser amplifiers. IEEE Journal of Quantum Electronics, 1988, 24(8): 1507–1518

    [68] Agrawal G P, Bobeck A. Modeling of distributed feedback semiconductor lasers with axially-varying parameters. IEEE Journal of Quantum Electronics, 1988, 24(12): 2407–2414

    [69] Shahshahani F, Ahmadi V. Analysis of relative intensity noise in tapered grating QWS-DFB laser diodes by using three rate equations model. Solid-State Electronics, 2008, 52(6): 857–862

    [70] Osinsky M, Polish M, Adams M J. Gain spectra of quarternary semiconductor. In: Proceedings of the IEEE I (Solid-State and Electron Devices). 1982, 129(6): 229–236

    [71] Rabinovich W S, Feldman B J. Spatial hole burning effects in distributed feedback lasers. IEEE Journal of Quantum Electronics, 1989, 25(1): 20–30

    Abbas GHADIMI, Alireza AHADPOUR SHAL. distributed feedback laser;transfer matrix method (TMM);transversal and lateral mode[J]. Frontiers of Optoelectronics, 2015, 8(3): 329
    Download Citation