[4] MANH T V, NGUYEN V T, TRAN T S, et al. Weighted k-nearest neighbour model for indoor VLC positioning[J]. Iet Communications, 2017, 11(6): 864-871.
[5] UYSAL M, CAPSONI C, GHASSEMLOOY Z, et al. Optical wireless communications[M]. Bellingham: SPIE, 2019.
[6] VUCIC J, KOTTKE C, NERRETER S, et al. 230 Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs[C]//IEEE. Proceeding of 2010 Conference on Optical Fiber Communication (OFC/NFOEC). New York: IEEE, 2010: 1-3.
[8] ZHANG W, CHOWDHURY M I S, KAVEHRAD M. Asynchronous indoor positioning system based on visible light communications[J]. Optical Engineering, 2014, 53(4): 045105-045114.
[9] ZENG L, O'BRIEN D, LE-MINH H, et al. Improvement of date rate by using equalization in an indoor visible light communication system[EB/OL]. [2021-03-22]. https://ieeexplore.ieee.org/document/4536841/citations#cita-tions.
[11] VANM T, TUANN V, SONT T, et al. Weighted k-nearest neighbour model for indoor VLC positioning[J]. IET Communications, 2017, 11(6): 864-871.
[12] MUHAMMAD S, TOUQEER A, ZHAO Y, et al. An LED based indoor localization system using k-means clustering[EB/OL]. [2021-03-22]. https://ieeexplore.ieee.org/document/7838152.
[14] LI D, ZHANG B, LI C. A feature-scaling-based k-nearest neighbor algorithm for indoor positioning systems[J]. IEEE Internet of Things Jour-nal, 2016, 3(4): 590-597.
[15] WEI H, YAO H. Indoor visible light location algorithm based on virtual fingerprint database[EB/OL]. [2021-03-22]. https://ieeexplore.ieee.org/document/8054455.