• Chinese Journal of Lasers
  • Vol. 48, Issue 6, 0600002 (2021)
Yongyi Chen1、2, Lirong Bao1、2, Hui Wang1、2, Zheng Ning2, Xiandong Zhong2, Jinle Cao1、2, Ruiqi Shen1、2, and Wei Zhang1、2、*
Author Affiliations
  • 1Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
  • 2School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
  • show less
    DOI: 10.3788/CJL202148.0600002 Cite this Article Set citation alerts
    Yongyi Chen, Lirong Bao, Hui Wang, Zheng Ning, Xiandong Zhong, Jinle Cao, Ruiqi Shen, Wei Zhang. Research Progress in Preparation of Nanoparticles by Laser Ablation in Liquid[J]. Chinese Journal of Lasers, 2021, 48(6): 0600002 Copy Citation Text show less
    Formation and cooling of nanodroplets[9]. (a) Formation of nanodroplets; (b) cooling of nanodroplets
    Fig. 1. Formation and cooling of nanodroplets[9]. (a) Formation of nanodroplets; (b) cooling of nanodroplets
    Schematic of the interaction between nanosecond pulsed laser and target[11]
    Fig. 2. Schematic of the interaction between nanosecond pulsed laser and target[11]
    Interaction between femtosecond pulsed laser and silicon wafer[11]. (a) Reaction on the surface of silicon wafer at different power densities; (b) material absorbs laser energy; (c) electrons stripped from atoms; (d) coulomb explosion on the surface of the material
    Fig. 3. Interaction between femtosecond pulsed laser and silicon wafer[11]. (a) Reaction on the surface of silicon wafer at different power densities; (b) material absorbs laser energy; (c) electrons stripped from atoms; (d) coulomb explosion on the surface of the material
    Formation mechanism of carbonized products with different structures in acetone[23]
    Fig. 4. Formation mechanism of carbonized products with different structures in acetone[23]
    Formation of nanoparticles in different concentrations of SDS solutions[24]
    Fig. 5. Formation of nanoparticles in different concentrations of SDS solutions[24]
    FE-SEM images of nanoparticles prepared in different concentrations of CTAB solutions[25]
    Fig. 6. FE-SEM images of nanoparticles prepared in different concentrations of CTAB solutions[25]
    Molecular structure of PVP, PVA, and PEG and protection for Al nanoparticles[26]
    Fig. 7. Molecular structure of PVP, PVA, and PEG and protection for Al nanoparticles[26]
    Optical microscopy and scanning electron microscopy images and corresponding particle size distribution histograms of NiO particles prepared in different solutions under the same condition[34]. (a) Distilled water; (b) ethanol solution
    Fig. 8. Optical microscopy and scanning electron microscopy images and corresponding particle size distribution histograms of NiO particles prepared in different solutions under the same condition[34]. (a) Distilled water; (b) ethanol solution
    Schematic of preparation of nanoparticles by laser ablation in dynamic microfluidics[37]. (a) Experimental setup; (b) confined mode of operation; (c) continuous mode of operation
    Fig. 9. Schematic of preparation of nanoparticles by laser ablation in dynamic microfluidics[37]. (a) Experimental setup; (b) confined mode of operation; (c) continuous mode of operation
    Scanning electron microscopy images of Cu nanoparticles prepared with different pulse widths[38]. (a)(b) 5 ns; (c)(d) 200 ps; (e)(f) 30 fs
    Fig. 10. Scanning electron microscopy images of Cu nanoparticles prepared with different pulse widths[38]. (a)(b) 5 ns; (c)(d) 200 ps; (e)(f) 30 fs
    Formation of nanoparticle in different solutions[39]. (a) Deionized water; (b) sodium hydroxide solution; (c) hydrogen peroxide solution; (d) anhydrous ethanol
    Fig. 11. Formation of nanoparticle in different solutions[39]. (a) Deionized water; (b) sodium hydroxide solution; (c) hydrogen peroxide solution; (d) anhydrous ethanol
    Three methods for laser ablation in liquid[53]
    Fig. 12. Three methods for laser ablation in liquid[53]
    Histogram of particle size distribution of alloy nanoparticles prepared in different solutions and corresponding hydrodynamic diameter, Zeta potential, and Ferret diameter[56]. (a) Histogram of particle size distribution of alloy nanoparticles prepared in acetone; (b) histogram of particle size distribution of alloy nanoparticles prepared in MMA; (c) histogram of particle size distribution of alloy nanoparticles prepared in deionized water; (d) h
    Fig. 13. Histogram of particle size distribution of alloy nanoparticles prepared in different solutions and corresponding hydrodynamic diameter, Zeta potential, and Ferret diameter[56]. (a) Histogram of particle size distribution of alloy nanoparticles prepared in acetone; (b) histogram of particle size distribution of alloy nanoparticles prepared in MMA; (c) histogram of particle size distribution of alloy nanoparticles prepared in deionized water; (d) h
    TEM images of nanoparticles prepared by ablating alloy targets with different molar ratios of Pb to Zn[57]. (a)(c)(e) Lowly enlarged TEM; (b)(d)(f) highly enlarged TEM
    Fig. 14. TEM images of nanoparticles prepared by ablating alloy targets with different molar ratios of Pb to Zn[57]. (a)(c)(e) Lowly enlarged TEM; (b)(d)(f) highly enlarged TEM
    TEM images of the samples prepared in four solutions[66]
    Fig. 15. TEM images of the samples prepared in four solutions[66]
    Ablated silicon mass as function of the number of laser pulses in different wavelengths[74]. (a) 1064 nm; (b) 355 nm
    Fig. 16. Ablated silicon mass as function of the number of laser pulses in different wavelengths[74]. (a) 1064 nm; (b) 355 nm
    The firstauthorLaser parameterTargetSolventVariableProductAveragesize /nmRef.
    Du800 nm (30 fs)--HAuCl4·3H2OConcentration of PVP,energy and timeof ablationAu9--21[27]
    Mafuné532 nmAgSDSConcentration of SDSand energyAg7.9--16.2[17]
    Tan1064/532 nmAu, AgH2OWavelengthAu, Ag9--32[18]
    Moniri1064 nm (7 ns)PtC3H6O,(CH2OH)2,C2H5OH, H2OType of solventsPt14--22[28]
    The firstauthorLaser parameterTargetSolventVariableProductAveragesize /nmRef.
    Zeng1064 nm (10 ns)ZnSDSConcentration of SDSZn, ZnO,Zn(OH)218.1--44.5[24]
    Lee1064 nm (7 ns)AlCTABConcentration of CTABAl, Al2O3,Al(OH)350--300[25]
    Singh1064/532 nm(5 ns)AlPVP, PVA,PEGType of solventsand wavelengthAl, Al2O316--33[26]
    Table 1. Preparation of metal nanoparticles by laser ablation in liquid
    The firstauthorLaserparameterTargetSolventVariableProductAveragesize /nmRef.
    Maneeratanasarn355 nm (10 ns)α-Fe2O3C2H5OH,H2O,C3H6OType of solventsα-Fe2O3,γ-Fe2O38--13[31]
    Zhang1064/355 nm(5 ns),800 nm(30 fs/200 ps)CuH2OPulse width,wavelengthCu2O,CuO1--200[38]
    Goncharova1064 nm (7 ns)CuH2O,NaOH,H2O2,C2H5OHType of solventsCu,Cu2O,CuO2--1000[39]
    Singh532 nm (8 ns),355 nm (5ns)ZnSDSEnergy,wavelengthZnO,ZnOOH13--28[44]
    Enríquez-Sánchez1064 nmMnH2OTime of ablationMnO,Mn3O47--11[45]
    Ghaem1064 nm (7 ns)CoH2OEnergyCo3O4100--200[46]
    Semaltianos800 nm (90 fs)CrH2O,C2H5OH,C3H6O,C7H8Type of solventsCr3O4,Cr2O3,CrO3,Cr3C2-x5--12[47]
    Table 2. Preparation of metal oxide nanoparticles by laser ablation in liquid
    The firstauthorLaserparameterTargetSolventVariableProductAveragesize /nmRef.
    Menéndez-Manjón515 nm (7 ps)Au, Ag,Au-Ag alloyMMAType of targetAu, Ag,Au-Ag8--12[51]
    Li248 nm (20 ns)Au+AgH2OTime ofablationAu@Ag20--35[58]
    Compagnini532 nmAu+AgH2ORatio of gold tosilver, time ofablationAu@Ag2--10[52]
    Wagener800 nm (120 fs),1064 nm (10 ps/8 ns)Fe-AuH2O,C3H6O,MMAType ofsolventsFe@Au,Au@Fe3O49--21[56]
    Jakobi800 nm (120 fs)Pt-IrC3H6O--Pt-Ir26[59]
    Jakobi800 nm (120 fs)Ni-Fe,Sm-CoC5H8OTime ofablationNi-Fe,Sm-Co6--10[60]
    Patra532 nm (9 ns)Al-CuH2O--Cu-Al, CuO,Al2O3,Al(OH)394[61]
    Table 3. Preparation of alloy nanoparticles by laser ablation in liquid
    The firstauthorLaserparameterTargetSolventVariableProductAveragesize /nmRef.
    Sadeghi1064 nm (7 ns)GraphiteH2O,C2H5OH,C3H6O,CTABType of solventsC, grapheneflakes--[66]
    Mahdian1064 nm (7 ns)GraphiteH2OTemperatureof liquidC, grapheneflakes400--650[67]
    Hameed1064 nm (7 ns)GraphiteH2OEnergyC, Grapheneflakes25--75[75]
    Lasemi800 nm (30 fs)Silicon waferC2H5OH,C4H10O,C6H14Type of solvents,energySiC, SiO2, Si9--15[76]
    Serrano-Ruz1064 nm (6 ns),532 nmSiH2O,C2H5OHWavelength, typeof solvents,energy, timeof ablationSi2--50[77]
    Zabotnov1250 nm (160 fs)Porous/crystallinesiliconH2O,C2H5OH,N2Type oftargets/solvents,time of ablationSi16--112[78]
    Table 4. Preparation of non-metallic nanoparticles by laser ablation in liquid
    Yongyi Chen, Lirong Bao, Hui Wang, Zheng Ning, Xiandong Zhong, Jinle Cao, Ruiqi Shen, Wei Zhang. Research Progress in Preparation of Nanoparticles by Laser Ablation in Liquid[J]. Chinese Journal of Lasers, 2021, 48(6): 0600002
    Download Citation