[1] KAPLAN E, HEGARTY C. Understanding GPS/GNSS: principles and applications[M]. 3rd ed. London: Artech, 2017: 339-344.
[4] CAO X L, MU R Z, YAN Y P. A novel threshold setting method for FFT-based GPS acquisition[C]//2009 the 11th International Conference on Computer Modelling and Simulation. Cambridge, UK: IEEE, 2009: 497-501. doi: 10.1109/UKSIM.2009.72.
[6] MA Yan, MA Li, ZHANG Jian. Research on adaptive acquisition method of coherent and incoherent integration for BDS/GPS satellite signals[C]//2019 IEEE the 1st International Conference on Civil Aviation Safety and Information Technology (ICCASIT). Kunming, China: IEEE, 2019: 588-590.) doi: 10.1109/ICCASIT48058.2019.8973124.
[7] SMIDT J, RONCAGLIOLO P A, MURAVCHIK C H. Statistical characterization of a constant false alarm detector for GNSS signals[C]//2011 International Conference on Localization and GNSS (ICL-GNSS). Tampere, Finland: IEEE, 2011: 98-103. doi: 10.1109/ICL-GNSS.2011.5955269.
[8] GEIGER B C, SOUDAN M, VOGEL C. On the detection probability of parallel code phase search algorithms in GPS receivers[C]//The 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Istanbul, Turkey: IEEE, 2010: 865-870. doi: 10.1109/PIMRC.2010.5672040.
[10] BORHANI-DARIAN P, CLOSAS P. Deep neural network approach to GNSS signal acquisition[C]//2020 IEEE/ION Position, Location and Navigation Symposium (PLANS). Portland, OR, USA: IEEE, 2020: 1214-1223. doi: 10.1109/PLANS46316.2020.9110205.
[11] BORHANI-DARIAN P, LI H, WU P, et al. Deep learning of GNSS acquisition[J]. Sensors, 2023, 23(3): 1-19. doi: 10.3390/s23031566.
[12] LI Gen. Research on network security state prediction method based on SVM[C]//2022 IEEE the 2nd International Conference on Electronic Technology, Communication and Information (ICETCI). Changchun, China: IEEE, 2022: 353-356. doi: 10.1109/ICETCI55101.2022.9832235.
[13] UPADHYAY P C, KARANAM L, LORY J A, et al. Classifying cover crop residue from RGB images: a simple SVM versus a SVM ensemble[C]//2021 IEEE Symposium Series on Computational Intelligence (SSCI). Orlando, FL, USA: IEEE, 2021: 1-7. doi: 10.1109/SSCI50451.2021.9660147.
[14] REZVANI S, WU J H. Handling multi-class problem by intuitionistic fuzzy twin support vector machines based on relative density information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 14653-14664. doi: 10.1109/TPAMI.2023.3310908.
[15] DEVIKANNIGA D, RAMU A, HALDORAI A. Efficient diagnosis of liver disease using support vector machine optimized with crows search algorithm[J]. EAI Endorsed Transactions on Energy Web, 2020, 20(29): e10. doi: 10.4108/eai.13-7-2018.164177.
[16] MADHU M S, KARTHIKEYAN P R. Detection of liver disorder using quadratic support vector machine in comparison with RBF SVM to measure the accuracy, precision, sensitivity and specificity[C]//2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES). Chennai, India: IEEE, 2022: 1-7. doi: 10.1109/ICSES55317.2022.9914126.
[17] JIE Song, HU Wankun. Experimental results of maritime target detection based on SVM classifier[C]//2020 IEEE the 3rd International Conference on Information Communication and Signal Processing (ICICSP). Shanghai, China: IEEE, 2020: 179-182. doi: 10.1109/ICICSP50920.2020.9232038.
[18] DENG Zhi, SHI Zhao, WANG Zhenxin, et al. Research on feature optimization scheme based on data feature enhancement[C]//2021 IEEE the 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). Hainan, China: IEEE, 2021: 270-278. doi: 10.1109/QRS-C55045.2021.00048.
[19] YAICHAROEN A, HASHIKURA K, SAMAD KAMAL M A, et al. Effects of dimensionality reduction on classifier training time and quality[C]//2023 Third International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP). Bangkok, Thailand: IEEE, 2023: 53-56. doi: 10.1109/ICA-SYMP56348.2023.10044946.
[20] RAMACHANDRAN R, RAVICHANDRAN G, RAVEENDRAN A. Evaluation of dimensionality reduction techniques for big data[C]//2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). Erode, India: IEEE, 2020: 226-231. doi: 10.1109/ICCMC48092.2020.ICCMC-00043.
[21] XIA Zhiming, CHEN Yang, XU Chen. Multiview PCA: a methodology of feature extraction and dimension reduction for high-order data[J]. IEEE Transactions on Cybernetics, 2022, 52(10): 11068-11080. doi: 10.1109/TCYB.2021.3106485.
[22] PAN Yi, ZHANG Tianqi, ZHANG Gang, et al. A novel acquisition algorithm based on PMF-apFFT for BOC modulated signals[J]. IEEE Access, 2019(7): 46686-46694. doi: 10.1109/ACCESS.2019.2909787.
[23] IINATTI J H J. On the threshold setting principles in code acquisition of DS-SS signals[J]. IEEE Journal on Selected Areas in Communications, 2000, 18(1): 62-72. doi: 10.1109/49.821719.
[24] GEIGER B C, VOGEL C, SOUDAN M. Comparison between ratio detection and threshold comparison for GNSS acquisition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1772-1779. doi: 10.1109/TAES.2012.6178098.
[25] ATHUL-VIJAY M P, KANAGALAKSHMI S, SUBODH RAJ M S, et al. Hand gesture recognition system using modified SVM and hybrid ensemble classifier[C]//2021 International Conference on Intelligent Technologies (CONIT). Hubli, India: IEEE, 2021: 1-6. doi: 10.1109/CONIT51480.2021.9498381.