• Advanced Photonics
  • Vol. 2, Issue 3, 034001 (2020)
Weiqiang Wang1、†, Leiran Wang1、2, and Wenfu Zhang1、2、*
Author Affiliations
  • 1Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics, State Key Laboratory of Transient Optics and Photonics, Xi’an, China
  • 2University of Chinese Academy of Sciences, Beijing, China
  • show less
    DOI: 10.1117/1.AP.2.3.034001 Cite this Article Set citation alerts
    Weiqiang Wang, Leiran Wang, Wenfu Zhang. Advances in soliton microcomb generation[J]. Advanced Photonics, 2020, 2(3): 034001 Copy Citation Text show less
    References

    [1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [2] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett., 93, 083904(2004).

    [3] A. A. Savchenkov et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett., 93, 243905(2004).

    [4] M.-G. Suh, K. Vahala. Gigahertz-repetition-rate soliton microcombs. Optica, 5, 65-66(2018).

    [5] W. Q. Wang et al. Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing. Sci. Rep., 6, 28501(2016).

    [6] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [7] D. K. Armani et al. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [8] P. Del’Haye et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [9] Y. Okawachi et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett., 36, 3398-3400(2011).

    [10] T. Herr et al. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

    [11] D. C. Cole et al. Kerr-microresonator solitons from a chirped background. Optica, 5, 1304-1310(2018).

    [12] V. Brasch et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016).

    [13] X. Yi et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078-1085(2015).

    [14] C. Joshi et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett., 41, 2565-2568(2016).

    [15] Z. Lu et al. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Adv., 9, 025314(2019).

    [16] H. Zhou et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 8, 50(2019).

    [17] Q.-F. Yang et al. Stokes solitons in optical microcavities. Nat. Phys., 13, 53-57(2017).

    [18] Q.-F. Yang et al. Counter-propagating solitons in microresonators. Nat. Photonics, 11, 560-564(2017).

    [19] W. Q. Wang et al. Robust soliton crystals in a thermally controlled microresonator. Opt. Lett., 43, 2002-2005(2018).

    [20] C. Bao et al. Observation of Fermi–Pasta–Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett., 117, 163901(2016).

    [21] H. Bao et al. Laser cavity-soliton microcombs. Nat. Photonics, 13, 384-389(2019).

    [22] W. Weng et al. Heteronuclear soliton molecules in optical microresonators.

    [23] X. Xue et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 9, 594-600(2015).

    [24] T. Herr et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett., 113, 123901(2014).

    [25] M. Karpov et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett., 116, 103902(2016).

    [26] X. Yi et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun., 8, 14869(2017).

    [27] Z. Lu et al. Raman self-frequency-shift of soliton crystal in a high index doped silica micro-ring resonator. Opt. Mater. Express, 8, 2662-2669(2018).

    [28] R. Niu et al. Repetition rate tuning of soliton in microrod resonators(2018).

    [29] S. Y. Zhang et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica, 6, 206-212(2019).

    [30] Z. Gong et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt. Lett., 43, 4366-4369(2018).

    [31] Y. He et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1144(2019).

    [32] M. Yu et al. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica, 3, 854-860(2016).

    [33] S. H. Lee et al. Towards visible soliton microcomb generation. Nat. Commun., 8, 1295(2017).

    [34] M. H. P. Pfeiffer et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica, 4, 684-691(2017). https://doi.org/10.1364/OPTICA.4.000684

    [35] M. Karpov et al. Photonic chip-based soliton frequency combs covering the biological imaging window. Nat. Commun., 9, 1146(2018).

    [36] I. S. Grudinin et al. High-contrast Kerr frequency combs. Optica, 4, 434-437(2017).

    [37] P.-H. Wang et al. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt. Express, 24, 10890-10897(2016).

    [38] M. Suh et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [39] P. Marin-Palomo et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [40] D. T. Spencer et al. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [41] P. Trocha et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [42] M.-G. Suh et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photonics, 13, 25-30(2019).

    [43] A. Pasquazi et al. Micro-combs: a novel generation of optical sources. Phys. Rep., 729, 1-81(2018).

    [44] L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).

    [45] N. G. Pavlov et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat. Photonics, 12, 694-698(2018).

    [46] D. C. Cole et al. Soliton crystals in Kerr resonaotors. Nat. Photonics, 11, 671-676(2017).

    [47] J. R. Stone et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett., 121, 063902(2018).

    [48] Q. Li et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 4, 193-203(2017).

    [49] C. Bao et al. Direct soliton generation in microresonators. Opt. Lett., 42, 2519-2522(2017).

    [50] Y. Geng et al. Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb. Opt. Lett., 43, 2406-2409(2018).

    [51] M. Yu et al. Breather soliton dynamics in microresonators. Nat. Commun., 8, 14569(2017).

    [52] B. Stern et al. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [53] J. Liu et al. Ultralow-power chip-based SMCs for photonic integration. Optica, 5, 1347-1353(2018).

    [54] B. Yao et al. Gate-tunable frequency combs in graphene-nitride microresonators. Nature, 558, 410-414(2018).

    [55] Z. Gong et al. Soliton microcomb generation at 2  μm in z-cut lithium niobate microring resonators. Opt. Lett., 44, 3182-3185(2019). https://doi.org/10.1364/OL.44.003182

    [56] Y. K. Chembo, N. Yu. Modal expansion approach to optical frequency-comb generation with monolithic whispering gallery-mode resonators. Phys. Rev. A, 82, 033801(2010).

    [57] Y. K. Chembo, N. Yu. On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators. Opt. Lett., 35, 2696-2698(2010).

    [58] A. B. Matsko et al. Mode-locked Kerr frequency combs. Opt. Lett., 36, 2845-2847(2011).

    [59] Y. K. Chembo, C. R. Menyuk. Spatiotemporal Lugiato–Lefever formalism for Kerr-comb generation in whispering-gallerymode resonators. Phys. Rev. A, 87, 053852(2013).

    [60] S. Coen et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett., 38, 37-39(2013).

    [61] T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 12, 4742-4750(2004).

    [62] V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko. Quality factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A, 137, 393-397(1989).

    [63] V. Brasch et al. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express, 24, 29312-29320(2016).

    [64] X. Yi et al. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett., 41, 2037-2040(2016).

    [65] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [66] Y. Geng et al. Kerr frequency comb dynamics circumventing cavity thermal behavior(2017).

    [67] S. Zhang, J. Silver, P. Del’Haye. Spectral extension and synchronisation of microcombs in a single microresonator(2020).

    [68] X. Guo et al. Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb. Phys. Rev. Appl., 10, 014012(2018).

    [69] H. Guo et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).

    [70] V. V. Vassiliev et al. Narrow-line-width diode laser with a high-Q microsphere resonator. Opt. Commun., 158, 305-312(1998).

    [71] N. M. Kondratiev et al. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express, 25, 28167-28178(2017).

    [72] A. S. Raja et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun., 10, 680(2019).

    [73] M.-G. Suh et al. Directly pumped 10 GHz microcomb modules from low-power diode lasers. Opt. Lett., 44, 1841-1843(2019).

    [74] B. Shen et al. Integrated turnkey soliton microcombs operated at CMOS frequencies(2019).

    [75] A. S. Voloshin et al. Dynamics of soliton self-injection locking in a photonic chip-based microresonator(2020).

    [76] E. Obrzud, S. Lecomte, T. Herr. Temporal solitons in microresonators driven by optical pulses. Nat. Photonics, 11, 600-607(2017).

    [77] E. Obrzud et al. A microphotonic astrocomb. Nat. Photonics, 13, 31-35(2019).

    [78] F. Leo et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics, 4, 471-476(2010).

    [79] M. Pang et al. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nat. Photonics, 10, 454-458(2016).

    [80] L. Stern et al. Direct Kerr frequency comb atomic spectroscopy and stabilization. Sci. Adv., 6, eaax6230(2020).

    [81] B. L. Zhao et al. Repetition-rate multiplicable soliton microcomb generation and stabilization via phase-modulated pumping scheme. Appl. Phys. Express, 13, 032009(2020).

    [82] M. Karpov et al. Dynamics of soliton crystals in optical microresonators. Nat. Phys., 15, 1071-1077(2019).

    [83] Y. He et al. Perfect soliton crystals on demand(2019).

    [84] K. Y. Yang et al. Broadband dispersion-engineered microresonator on-a-chip. Nat. Photonics, 10, 316-320(2016).

    [85] H. Guo et al. Intermode breather solitons in optical microresonators. Phys. Rev. X, 7, 041055(2017).

    [86] C. J. Bao et al. Effect of a breather soliton in Kerr frequency combs on optical communication systems. Opt. Lett., 41, 1764(2016).

    [87] A. B. Matsko, A. A. Savchenkov, L. Maleki. On excitation of breather solitons in an optical microresonator. Opt. Lett., 37, 4856-4858(2012).

    [88] E. Lucas et al. Breathing dissipative solitons in optical microresonators. Nat. Commun., 8, 736(2017).

    [89] B. Kibler et al. The Peregrine soliton in nonlinear fibre optics. Nat. Phys., 6, 790-795(2010).

    [90] M. Peccianti et al. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun., 3, 765(2012).

    [91] W. Wang et al. Repetition rate multiplication pulsed laser source based on a microring resonator. ACS Photonics., 4, 1677-1683(2017).

    [92] P. P. Rivas et al. Origin and stability of dark pulse Kerr combs in normal dispersion resonators. Opt. Lett., 41, 2402-2405(2016).

    [93] P. P. Rivas et al. Dark solitons in the Lugiato–Lefever equation with normal dispersion. Phys. Rev. A, 93, 063839(2016).

    [94] L. R. Wang. Coexistence and evolution of bright pulses and dark solitons in a fiber laser. Opt. Commun., 297, 129-132(2013).

    [95] P. P. Rivas, D. Gomila, L. Gelens. Coexistence of stable dark- and bright-soliton Kerr combs in normal-dispersion resonators. Phys. Rev. A, 95, 053863(2017).

    [96] X. H. Hu et al. Spatiotemporal evolution of continuous-wave field and dark soliton formation in a microcavity with normal dispersion. Chin. Phys. B, 26, 074216(2017).

    [97] X. X. Xue et al. Normal-dispersion microcombs enabled by controllable mode interactions. Laser and Photonic Rev., 9, L23-L28(2015).

    [98] L. R. Wang et al. Observations of four types of pulses in a fiber laser with large net-normal dispersion. Opt. Express, 19, 7616-7624(2011).

    [99] V. E. Lobanov, G. Lihachev, M. L. Gorodetsky. Generation of platicons and frequency combs in optical microresonators with normal GVD by modulated pump. Europhys. Lett., 112, 54008(2015).

    [100] A. A. Savchenkov et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett., 101, 093902(2008).

    [101] W. Liang et al. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt. Lett., 39, 2920-2923(2014).

    [102] S. W. Huang et al. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett., 114, 053901(2015).

    [103] Y. Liu et al. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica, 2, 137-144(2014).

    [104] X. X. Xue et al. Second-harmonic assisted four-wave mixing in chip-based microresonator frequency comb generation. Light Sci. Appl., 6, e16253(2017).

    [105] Z.-X. Ding et al. All-fiber ultrafast laser generating gigahertz-rate pulses based on a hybrid plasmonic microfiber resonator. Adv. Photon., 2, 026002(2020).

    [106] H. Zhang et al. Coherent energy exchange between components of a vector soliton in fiber lasers. Opt. Express, 16, 12618-12623(2008).

    [107] Y. Xiang et al. Scalar and vector solitons in a bidirectional mode-locked fibre laser. J. Lightwave Technol., 37, 5108-5114(2019).

    [108] D. Mao et al. Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser. Laser Phys. Lett., 8, 134-138(2011).

    [109] N. Akhmediev, A. Ankiewicz. Dissipative Solitons, 661(2005).

    [110] G. Fibich, B. Ilan. Optical light bullets in a pure Kerr medium. Opt. Lett., 29, 887-889(2004).

    [111] M. Tlidi et al. Drifting cavity solitons and dissipative rogue waves induced by time-delayed feedback in Kerr optical frequency comb and in all fiber cavities. Chaos, 27, 114312(2017).

    [112] Y. F. Song et al. Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives. Adv. Photon., 2, 024001(2020).

    [113] L. R. Wang, X. M. Liu, Y. K. Gong. Giant-chirp oscillator for ultra-large net-normal dispersion fiber lasers. Laser Phys. Lett., 7, 63-67(2010).

    [114] L. R. Wang et al. Dissipative soliton generation/compression in a compact all-fibre laser system. Electron. Lett., 47, 392-393(2011).

    [115] J. Pfeifle et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics, 8, 375-380(2014).

    [116] A. Fülöp et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun., 9, 1598(2018).

    [117] M. Mazur et al. Enabling high spectral efficiency coherent super channel transmission with SMCs(2018).

    [118] Q. Yang et al. Vernier spectrometer using counter-propagating SMCs. Science, 363, 965-968(2019).

    [119] A. Dutt et al. On-chip dual-comb source for spectroscopy. Sci. Adv., 4, e1701858(2018).

    [120] M. Yu et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun., 9, 1869(2018).

    [121] E. Lucas et al. Spatial multiplexing of soliton microcombs. Nat. Photonics, 12, 699-705(2018).

    [122] J. Riemensberger et al. Massively parallel coherent laser ranging using soliton microcombs(2019).

    [123] J. Wang et al. Long distance measurement using single soliton microcomb(2020).

    [124] S. B. Papp et al. Microresonator frequency comb optical clock. Optica, 2, 10-14(2014).

    [125] P. Del’Haye et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photonics, 10, 516-520(2016).

    [126] S.-W. Huang et al. A broadband chip-scale optical frequency synthesizer at 2.7×1016 relative uncertainty. Sci. Adv., 2, e1501489(2016). https://doi.org/10.1126/sciadv.1501489

    [127] Z. L. Newman et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [128] F. Alishahi et al. Reconfigurable optical generation of nine Nyquist WDM channels with sinc-shaped temporal pulse trains using a single microresonator-based Kerr frequency comb. Opt. Lett., 44, 1852-1855(2019).

    [129] W. Liang et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 6, 7957(2015).

    [130] W. Weng et al. Spectral purification of microwave signals with disciplined dissipative Kerr solitons. Phys. Rev. Lett., 122, 013902(2019).

    [131] X. Xu et al. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt. Express, 26, 2569-2583(2018).

    [132] X. Xu et al. An optical micro-comb with a 50-GHz free spectral range for photonic microwave true time delays(2017).

    [133] X. Y. Xu et al. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photonics, 2, 096104(2017).

    [134] X. X. Xue, A. M. Weiner. Microwave photonics connected with microresonator frequency combs. Front. Optoelectron., 9, 238-248(2016).

    [135] X. X. Xue et al. Microresonator frequency combs for integrated microwave photonics. IEEE Photonics Technol. Lett., 30, 1814-1817(2018).

    [136] M. Kues et al. Quantum optical microcombs. Nat. Photonics, 13, 170-179(2019).

    [137] C. Reimer et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 351, 1176-1180(2016).

    [138] M. Kues et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 546, 622-626(2017).

    [139] F.-X. Wang et al. Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photon. Rev., 14, 1900190(2020).

    [140] L. Caspani et al. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs. Nanophotonics, 5, 351-362(2016).

    [141] C. L. Xiong, B. Bell, B. J. Eggleton. CMOS-compatible photonic devices for single-photon generation. Nanophotonics, 5, 427-439(2016).

    [142] C. Reimer et al. CMOS-compatible, multiplexed source of heralded photon pairs: towards integrated quantum combs. Opt. Express, 22, 6535-6546(2014).

    [143] W. C. Jiang et al. Silicon-chip source of bright photon pairs. Opt. Express, 23, 20884-20904(2015).

    [144] R. Wakabayashi et al. Time-bin entangled photon pair generation from Si micro-ring resonator. Opt. Express, 23, 1103-1113(2015).

    [145] D. Grassani et al. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica, 2, 88-94(2015).

    [146] P. Imany et al. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Opt. Express, 26, 1825-1840(2018).

    [147] T. J. Kippenberg et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [148] D. Chen et al. On-chip ultra-high-Q silicon oxynitride optical resonators. ACS Photonics, 4, 2376-2381(2017).

    [149] D. Chen et al. Normal dispersion silicon oxynitride microresonator Kerr frequency combs. Appl. Phys. Lett., 115, 051105(2019).

    [150] A. Kovach et al. Emerging material systems for integrated optical Kerr frequency combs. Adv. Opt. Photonics, 12, 135-222(2020).

    [151] B. Y. Kim et al. Turn-key, high-efficiency Kerr comb source. Opt. Lett., 44, 4475-4478(2019).

    [152] X. X. Xue, X. P. Zheng, B. K. Zhou. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photonics, 13, 616-622(2019).

    [153] L. R. Wang et al. Frequency comb generation in the green using silicon nitride microresonators. Laser Photonics Rev., 10, 631-638(2016).

    [154] M. Zhang et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [155] J. G. Zhu et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon., 4, 46-49(2010).

    [156] B.-Q. Shen et al. Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity. Phys. Rev. Appl., 5, 024011(2016).

    [157] D. Xu et al. Synchronization and temporal nonreciprocity of optical microresonators via spontaneous symmetry breaking. Adv. Photon., 2, 046002(2019).

    [158] J. Liu et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon.(2020).

    CLP Journals

    [1] Shuai Wan, Rui Niu, Jin-Lan Peng, Jin Li, Guang-Can Guo, Chang-Ling Zou, Chun-Hua Dong. Fabrication of the high-Q Si3N4 microresonators for soliton microcombs[J]. Chinese Optics Letters, 2022, 20(3): 032201

    [2] Bo Jiang, Song Zhu, Linhao Ren, Lei Shi, Xinliang Zhang. Simultaneous ultraviolet, visible, and near-infrared continuous-wave lasing in a rare-earth-doped microcavity[J]. Advanced Photonics, 2022, 4(4): 046003

    [3] Xinyu Wang, Peng Xie, Weiqiang Wang, Yang Wang, Zhizhou Lu, Leiran Wang, Sai T. Chu, Brent E. Little, Wei Zhao, Wenfu Zhang. Program-controlled single soliton microcomb source[J]. Photonics Research, 2021, 9(1): 66

    [4] Haizhong Weng, Jia Liu, Adnan Ali Afridi, Jing Li, Jiangnan Dai, Xiang Ma, Yi Zhang, Qiaoyin Lu, John F. Donegan, Weihua Guo. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator[J]. Photonics Research, 2021, 9(7): 1351

    [5] Xiao-Cong (Larry) Yuan, Anatoly Zayats. Laser: sixty years of advancement[J]. Advanced Photonics, 2020, 2(5): 050101

    [6] Guoping Lin, Tang Sun. Mode crossing induced soliton frequency comb generation in high-Q yttria-stabilized zirconia crystalline optical microresonators[J]. Photonics Research, 2022, 10(3): 731

    [7] Runlin Miao, Chenxi Zhang, Xin Zheng, Xiang’ai Cheng, Ke Yin, Tian Jiang. Repetition rate locked single-soliton microcomb generation via rapid frequency sweep and sideband thermal compensation[J]. Photonics Research, 2022, 10(8): 1859

    Weiqiang Wang, Leiran Wang, Wenfu Zhang. Advances in soliton microcomb generation[J]. Advanced Photonics, 2020, 2(3): 034001
    Download Citation