• Photonics Research
  • Vol. 11, Issue 7, 1294 (2023)
Zhipeng Qi1,†, Hao Sun2,†, Guohua Hu3,5,*, Chunyu Deng3..., Wanghua Zhu3, Bo Liu1,6,*, Ying Li1, Shaopeng Liu1, Xuechao Yu4 and Yinping Cui3,7,*|Show fewer author(s)
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • 2The Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore 117544, Singapore
  • 3Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
  • 4Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • 5e-mail: photonics@seu.edu.cn
  • 6e-mail: bo@nuist.edu.cn
  • 7e-mail: cyp@seu.edu.cn
  • show less
    DOI: 10.1364/PRJ.486329 Cite this Article Set citation alerts
    Zhipeng Qi, Hao Sun, Guohua Hu, Chunyu Deng, Wanghua Zhu, Bo Liu, Ying Li, Shaopeng Liu, Xuechao Yu, Yinping Cui, "Electrical manipulation of lightwaves in the uniaxially strained photonic honeycomb lattices under a pseudomagnetic field," Photonics Res. 11, 1294 (2023) Copy Citation Text show less
    References

    [1] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim. Room-temperature quantum Hall effect in graphene. Science, 315, 1379(2007).

    [2] K. V. Klitzing, G. Dorda, M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett., 45, 494-497(1980).

    [3] Y. Hatsugai. Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett., 71, 3697-3700(1993).

    [4] F. Guinea, M. I. Katsnelson, A. K. Geim. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys., 6, 30-33(2010).

    [5] M. M. Fogler, F. Guinea, M. I. Katsnelson. Pseudomagnetic fields and ballistic transport in a suspended graphene sheet. Phys. Rev. Lett., 101, 226804(2008).

    [6] M. Mucha-Kruczyński, V. I. Falko. Pseudo-magnetic field distribution and pseudo-Landau levels in suspended graphene flakes. Solid State Commun., 152, 1442-1445(2012).

    [7] H. Sun, Z. Qi, Y. Kim, M. Luo, B. Yang, D. Nam. Frequency-tunable terahertz graphene laser enabled by pseudomagnetic fields in strain-engineered graphene. Opt. Express, 29, 1892-1902(2021).

    [8] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. C. Neto, M. F. Crommie. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science, 329, 544-547(2010).

    [9] M. R. Masir, D. Moldovan, F. M. Peeters. Pseudo magnetic field in strained graphene: revisited. Solid State Commun., 175, 76-82(2013).

    [10] T. Low, F. Guinea. Strain-induced pseudomagnetic field for novel graphene electronics. Nano Lett., 10, 3551-3554(2010).

    [11] C. Si, Z. Sun, F. Liu. Strain engineering of graphene: a review. Nanoscale, 8, 3207-3217(2016).

    [12] F. Guinea, A. K. Geim, M. I. Katsnelson, K. S. Novoselov. Generating quantizing pseudomagnetic fields by bending graphene ribbons. Phys. Rev. B, 81, 035408(2010).

    [13] D. B. Zhang, G. Seifert, K. Chang. Strain-induced pseudomagnetic fields in twisted graphene nanoribbons. Phys. Rev. Lett., 112, 096805(2014).

    [14] C. C. Hsu, M. L. Teague, J. Q. Wang, N. C. Yeh. Nanoscale strain engineering of giant pseudo-magnetic fields, valley polarization, and topological channels in graphene. Sci. Adv., 6, eaat9488(2020).

    [15] D. H. Kang, H. Sun, M. Luo, K. Lu, M. Chen, Y. Kim, Y. Jung, X. Gao, S. J. Parluhutan, J. Ge, S. W. Koh, D. Giovanni, T. C. Sum, Q. J. Wang, H. Li, D. Nam. Pseudo-magnetic field-induced slow carrier dynamics in periodically strained graphene. Nat. Commun., 12, 5087(2021).

    [16] J. Mornhinweg, M. Halbhuber, C. Ciuti, D. Bougeard, R. Huber, C. Lange. Tailored subcycle nonlinearities of ultrastrong light-matter coupling. Phys. Rev. Lett., 126, 177404(2021).

    [17] S. Rajabali, E. Cortese, M. Beck, S. De Liberato, J. Faist, G. Scalari. Polaritonic nonlocality in light–matter interaction. Nat. Photonics, 15, 690-695(2021).

    [18] D. De Bernardis, Z. P. Cian, I. Carusotto, M. Hafezi, P. Rabl. Light–matter interactions in synthetic magnetic fields: Landau-photon polaritons. Phys. Rev. Lett., 126, 103603(2021).

    [19] E. M. Purcell, H. C. Torrey, R. V. Pound. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev., 69, 37-38(1946).

    [20] G. Scalari, C. Maissen, D. Turčinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, J. Faist. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science, 335, 1323-1326(2012).

    [21] J. Yuan, C. Xu, H. Cai, D. W. Wang. Gap-protected transfer of topological defect states in photonic lattices. APL Photon., 6, 030803(2021).

    [22] N. Schine, M. Chalupnik, T. Can, A. Gromov, J. Simon. Electromagnetic and gravitational responses of photonic Landau levels. Nature, 565, 173-179(2019).

    [23] M. Hafezi, E. A. Demler, M. D. Lukin, J. M. Taylor. Robust optical delay lines with topological protection. Nat. Phys., 7, 907-912(2011).

    [24] F. Deng, Y. Li, Y. Sun, X. Wang, Z. Guo, Y. Shi, H. Jiang, K. Chang, H. Chen. Valley-dependent beams controlled by pseudomagnetic field in distorted photonic graphene. Opt. Lett., 40, 3380-3383(2015).

    [25] E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, N. I. Zheludev. Metamaterials: optical activity without chirality. Phys. Rev. Lett., 102, 113902(2009).

    [26] Y. Ming, C. W. Qiu. Zero chiral bulk modes in 3D Weyl metamaterials. Sci. Bull., 64, 799-801(2019).

    [27] H. Jia, R. Zhang, W. Gao, Q. Guo, B. Yang, J. Hu, Y. Bi, Y. Xiang, C. Liu, S. Zhang. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials. Science, 363, 148-151(2019).

    [28] M. Hafezi, S. Mittal, J. Fan, A. Migdall, J. M. Taylor. Imaging topological edge states in silicon photonics. Nat. Photonics, 7, 1001-1005(2013).

    [29] N. Schine, A. Ryou, A. Gromov, A. Sommer, J. Simon. Synthetic Landau levels for photons. Nature, 534, 671-675(2016).

    [30] H. Schomerus, N. Y. Halpern. Parity anomaly and Landau-level lasing in strained photonic honeycomb lattices. Phys. Rev. Lett., 110, 013903(2013).

    [31] J. Guglielmon, M. C. Rechtsman, M. I. Weinstein. Landau levels in strained two-dimensional photonic crystals. Phys. Rev. A, 103, 013505(2021).

    [32] M. C. Rechtsman, J. M. Zeuner, A. Tünnermann, S. Nolte, M. Segev, A. Szameit. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photonics, 7, 153-158(2013).

    [33] Z. Yang, F. Gao, Y. Yang, B. Zhang. Strain-induced gauge field and Landau levels in acoustic structures. Phys. Rev. Lett., 118, 194301(2017).

    [34] O. Jamadi, E. Rozas, G. Salerno, M. Milićević, T. Ozawa, I. Sagnes, A. Lemaître, L. Le Gratiet, A. Harouri, I. Carusotto, J. Bloch, A. Amo. Direct observation of photonic Landau levels and helical edge states in strained honeycomb lattices. Light Sci. Appl., 9, 144(2020).

    [35] G. J. Verbiest, S. Brinker, C. Stampfer. Uniformity of the pseudomagnetic field in strained graphene. Phys. Rev. B, 92, 075417(2015).

    [36] D. N. Le, V. H. Le, P. Roy. Graphene under uniaxial inhomogeneous strain and an external electric field: Landau levels, electronic, magnetic and optical properties. Eur. Phys. J. B, 93, 38-40(2020).

    [37] S. Zhu, J. A. Stroscio, T. Li. Programmable extreme pseudomagnetic fields in graphene by a uniaxial stretch. Phys. Rev. Lett., 115, 245501(2015).

    [38] M. Yan, W. Deng, X. Huang, Y. Wu, Y. Yang, J. Lu, F. Li, Z. Liu. Pseudomagnetic fields enabled manipulation of on-chip elastic waves. Phys. Rev. Lett., 127, 136401(2021).

    [39] M. Teng, S. Fathpour, R. Safian, L. Zhuang, A. Honardoost, Y. Alahmadi, S. S. Polkoo, K. Kojima, H. Wen, C. K. Renshaw, P. Likamwa, G. Li. Miniaturized silicon photonics devices for integrated optical signal processors. J. Lightwave Technol., 38, 6-17(2020).

    [40] J. Qin, S. Jiang, Z. Wang, X. Cheng, B. Li, Y. Shi, D. P. Tsai, A. Q. Liu, W. Huang, W. Zhu. Metasurface micro/nano-optical sensors: principles and applications. ACS Nano, 16, 11598-11618(2022).

    [41] T. Nagatsuma, G. Ducournau, C. C. Renaud. Advances in terahertz communications accelerated by photonics. Nat. Photonics, 10, 371-379(2016).

    [42] Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab. Active control of slow light on a chip with photonic crystal waveguides. Nature, 438, 65-69(2005).

    [43] S. Noda, K. Kitamura, T. Okino, D. Yasuda, Y. Tanaka. Photonic-crystal surface-emitting lasers: review and introduction of modulated-photonic crystals. IEEE J. Sel. Top. Quantum Electron., 23, 4900107(2017).

    [44] G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, J. Vuⓒković. Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode. Nat. Commun., 2, 539(2011).

    [45] Z. Qi, G. Hu, C. Deng, H. Sun, Y. Sun, Y. Li, B. Liu, Y. Bai, S. Chen, Y. Cui. Electrical tunable topological valley photonic crystals for on-chip optical communications in the telecom band. Nanophotonics, 11, 4273-4285(2022).

    [46] S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, B. Min. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater., 11, 936-941(2012).

    [47] C. Wang, W. Liu, Z. Li, H. Cheng, Z. Li, S. Chen, J. Tian. Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces. Adv. Opt. Mater., 6, 1701047(2018).

    [48] Q. Li, X. Cai, T. Liu, M. Jia, Q. Wu, H. Zhou, H. Liu, Q. Wang, X. Ling, C. Chen, F. Ding, Q. He, Y. Zhang, S. Xiao, L. Zhou. Gate-tuned graphene meta-devices for dynamically controlling terahertz wavefronts. Nanophotonics, 11, 2085-2096(2022).

    [49] J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, A. Tchelnokov. Photonic Crystals: Towards Nanoscale Photonic Devices(2005).

    [50] G. Montambaux, F. Piéchon, J. N. Fuchs, M. O. Goerbig. Merging of Dirac points in a two-dimensional crystal. Phys. Rev. B, 80, 153412(2009).

    [51] V. M. Pereira, A. H. Castro Neto, N. M. R. Peres. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B, 80, 045401(2009).

    [52] P. Ruffieux, S. Wang, B. Yang, C. Sanchez-Sanchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Müllen, R. Fasel. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature, 531, 489-492(2016).

    [53] A. Chaves, L. Covaci, K. Y. Rakhimov, G. A. Farias, F. M. Peeters. Wave-packet dynamics and valley filter in strained graphene. Phys. Rev. B, 82, 205430(2010).

    [54] M. Jamotte, N. Goldman, M. Di Liberto. Strain and pseudo-magnetic fields in optical lattices from density-assisted tunneling. Commun. Phys., 5, 30(2022).

    [55] H. T. Yang. Strain induced shift of Dirac points and the pseudo-magnetic field in graphene. J. Phys. Condens. Matter, 23, 505502(2011).

    [56] M. Luo, H. Sun, Z. Qi, K. Lu, M. Chen, D. Kang, Y. Kim, D. Burt, X. Yu, C. Wang, Y. D. Kim, H. Wang, Q. J. Wang, D. Nam. Triaxially strained suspended graphene for large-area pseudo-magnetic fields. Opt. Lett., 47, 2174-2177(2022).

    [57] K. Ohtaka. Density of states of slab photonic crystals and the laser oscillation in photonic crystals. J. Lightwave Technol., 17, 2161-2169(1999).

    [58] J. W. Dong, X. D. Chen, H. Zhu, Y. Wang, X. Zhang. Valley photonic crystals for control of spin and topology. Nat. Mater., 16, 298-302(2017).

    [59] J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, Z. Liu. Observation of topological valley transport of sound in sonic crystals. Nat. Phys., 13, 369-374(2017).

    [60] E. Tang, L. Fu. Strain-induced partially flat band, helical snake states and interface superconductivity in topological crystalline insulators. Nat. Phys., 10, 964-969(2014).

    [61] Y. Liu, R. P. Tiwari, M. Brada, C. Bruder, F. V. Kusmartsev, E. J. Mele. Snake states and their symmetries in graphene. Phys. Rev. B, 92, 235438(2015).

    [62] X. T. He, E. T. Liang, J. J. Yuan, H. Y. Qiu, X. D. Chen, F. L. Zhao, J. W. Dong. A silicon-on-insulator slab for topological valley transport. Nat. Commun., 10, 872(2019).

    [63] G. Salerno, T. Ozawa, H. M. Price, I. Carusotto. Propagating edge states in strained honeycomb lattices. Phys. Rev. B, 95, 245418(2017).

    [64] J. Lu, C. Qiu, M. Ke, Z. Liu. Valley vortex states in sonic crystals. Phys. Rev. Lett., 116, 093901(2016).

    [65] J. Komma, C. Schwarz, G. Hofmann, D. Heinert, R. Nawrodt. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett., 101, 041905(2012).

    Zhipeng Qi, Hao Sun, Guohua Hu, Chunyu Deng, Wanghua Zhu, Bo Liu, Ying Li, Shaopeng Liu, Xuechao Yu, Yinping Cui, "Electrical manipulation of lightwaves in the uniaxially strained photonic honeycomb lattices under a pseudomagnetic field," Photonics Res. 11, 1294 (2023)
    Download Citation