• Photonics Research
  • Vol. 9, Issue 8, 1531 (2021)
Yutian Wang1, Songnian Fu2, Jian Kong3, Andrey Komarov4, Mariusz Klimczak5, Ryszard Buczyński5, Xiahui Tang1, Ming Tang1, Yuwen Qin2, and Luming Zhao1、*
Author Affiliations
  • 1School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Advanced Institute of Photonics Technology, School of Information Engineering, and Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
  • 3Kunshan Shunke Laser Technology Co., Ltd., Suzhou 215347, China
  • 4Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
  • 5Faculty of Physics, University of Warsaw, Warsaw 02-093, Poland
  • show less
    DOI: 10.1364/PRJ.427842 Cite this Article Set citation alerts
    Yutian Wang, Songnian Fu, Jian Kong, Andrey Komarov, Mariusz Klimczak, Ryszard Buczyński, Xiahui Tang, Ming Tang, Yuwen Qin, Luming Zhao. Nonlinear Fourier transform enabled eigenvalue spectrum investigation for fiber laser radiation[J]. Photonics Research, 2021, 9(8): 1531 Copy Citation Text show less
    References

    [1] P. M. W. French. The generation of ultrashort pulses. Rep. Prog. Phys., 58, 169-267(1995).

    [2] U. Keller. Recent developments in compact ultrafast lasers. Nature, 424, 831-838(2003).

    [3] A. Martinez, Z. P. Sun. Nanotube and graphene saturable absorbers for fiber lasers. Nat. Photonics, 7, 842-845(2013).

    [4] U. Andral, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, P. Grelu. Fiber laser mode locked through an evolutionary algorithm. Optica, 2, 275-278(2015).

    [5] S. Kobtsev, S. Kukarin, S. Smirnov, S. K. Turitsyn, A. Latkin. Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers. Opt. Express, 17, 20707-20713(2009).

    [6] N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, S. K. Turitsyn. Mode-locking via dissipative Faraday instability. Nat. Commun., 7, 12441(2016).

    [7] J. Xu, L. Huang, M. Jiang, J. Ye, P. Ma, J. Leng, J. Wu, H. Zhang, P. Zhou. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output. Photon. Res., 5, 350-354(2017).

    [8] A. Chong, J. Buckley, W. Renninger, F. Wise. All-normal-dispersion femtosecond fiber laser. Opt. Express, 14, 10095-10100(2006).

    [9] A. F. J. Runge, N. G. R. Broderick, M. Erkintalo. Observation of soliton explosions in a passively mode-locked fiber laser. Optica, 2, 36-39(2015).

    [10] G. Herink, F. Kurtz, B. Jalali, D. R. Solli, C. Ropers. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science, 356, 50-54(2017).

    [11] K. Krupa, K. Nithyanandan, G. Grelu. Vector dynamics of incoherent dissipative optical solitons. Optica, 4, 1239-1244(2017).

    [12] X. Liu, D. Popa, N. Akhmediev. Revealing the transition dynamics from Q switching to mode locking in a soliton laser. Phys. Rev. Lett., 123, 093901(2019).

    [13] X. Liu, M. Pang. Revealing the buildup dynamics of harmonic mode-locking states in ultrafast lasers. Laser Photonics Rev., 13, 1800333(2019).

    [14] P. Suret, R. E. Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, S. Bielawski. Direct observation of rogue waves in optical turbulence using time microscopy. Nat. Commun., 7, 13136(2016).

    [15] A. Tikan, C. Billet, G. El, A. Tovbis, M. Bertola, T. Sylvestre, F. Gustave, S. Randoux, G. Genty, P. Suret, J. M. Dudley. Universality of the peregrine soliton in the focusing dynamics of the cubic nonlinear Schrödinger equation. Phys. Rev. Lett., 119, 033901(2017).

    [16] S. M. J. Kelly. Characteristic sideband instability of periodically amplified average soliton. Electron. Lett., 28, 806-807(1992).

    [17] M. Liu, H. J. Chen, A. P. Luo, G. Y. Zhou, Z. C. Luo. Identification of coherent and incoherent spectral sidebands in an ultrafast fiber laser. IEEE J. Sel. Top. Quantum Electron., 24, 1100606(2018).

    [18] A. Komarov, K. Komarov, A. Niang, F. Sanchez. Nature of soliton interaction in fiber lasers with continuous external optical injection. Phys. Rev. A, 89, 013833(2014).

    [19] S. K. Turitsyn, J. E. Prilepsky, S. T. Le, S. Wahls, L. L. Frumin, M. Kamalian, S. A. Derevyanko. Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives. Optica, 4, 307-322(2017).

    [20] M. I. Yousefi, F. R. Kschischang. Information transmission using the nonlinear Fourier transform. Part II: numerical methods. IEEE Trans. Inf. Theory, 60, 4329-4345(2014).

    [21] J. E. Prilepsky, S. A. Derevyanko, K. J. Blow, I. Gabitov, S. K. Turitsyn. Nonlinear inverse synthesis and eigenvalue division multiplexing in optical fiber channels. Phys. Rev. Lett., 113, 013901(2014).

    [22] S. T. Le, V. Aref, H. Buelow. Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit. Nat. Photonics, 11, 570-576(2017).

    [23] S. Randoux, P. Suret, G. El. Inverse scattering transform analysis of rogue waves using local periodization procedure. Sci. Rep., 6, 29238(2016).

    [24] J. Wang, A. Sheng, X. Huang, R. Li, G. He. Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform. Chin. Phys. B, 29, 034207(2020).

    [25] P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, J. M. Dudley. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photonics, 12, 221-227(2018).

    [26] S. Sugavanam, M. K. Kopae, J. Peng, J. E. Prilepsky, S. K. Turitsyn. Analysis of laser radiation using the nonlinear Fourier transform. Nat. Commun., 10, 5663(2019).

    [27] I. S. Chekhovskoy, O. V. Shtyrina, M. P. Fedoruk, S. B. Medvedev, S. K. Turitsyn. Nonlinear Fourier transform for analysis of coherent structures in dissipative systems. Phys. Rev. Lett., 122, 153901(2019).

    [28] Y. Wang, S. Fu, C. Zhang, X. Tang, J. Kong, J. H. Lee, L. M. Zhao. Soliton distillation of pulses from a fiber laser. J. Lightwave Technol., 39, 2542-2546(2021).

    [29] L. M. Zhao, D. Y. Tang, F. Lin, B. Zhao. Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity. Opt. Express, 12, 4573-4578(2004).

    [30] L. Li, H. Huang, L. Su, D. Y. Shen, D. Y. Tang, M. Klimczak, L. M. Zhao. Various soliton molecules in fiber systems. Appl. Opt., 58, 2745-2753(2019).

    [31] A. Vasylchenkova, D. Salnikov, D. Karaman, O. G. Vasylchenkov, J. E. Prilepskiy. Fixed-point realisation of fast nonlinear Fourier transform algorithm for FPGA implementation of optical data processing. Proc. SPIE, 11770, 1177016(2021).

    [32] V. E. Zakharov, A. B. Shabat. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. J. Exp. Theor. Phys., 34, 62-69(1972).

    [33] T. Gui, C. Lu, A. P. L. Lau, P. K. A. Wai. High-order modulation on a single discrete eigenvalue for optical communications based on nonlinear Fourier transform. Opt. Express, 25, 20286-20297(2017).

    [34] L. M. Zhao, D. Y. Tang, H. Y. Tam, C. Lu. Pulse breaking recovery in fiber lasers. Opt. Express, 16, 12102-12107(2008).

    [35] Z. Zheng, X. Zhang, R. Yu, L. Xi, X. Zhang. Frequency offset estimation for nonlinear frequency division multiplexing with discrete spectrum modulation. Opt. Express, 27, 28223-28238(2019).

    [36] Y. Wang, R. Xin, S. Fu, M. Tang, D. Liu. Laser linewidth tolerance for nonlinear frequency division multiplexing transmission with discrete spectrum modulation. Opt. Express, 28, 9642-9652(2020).

    Yutian Wang, Songnian Fu, Jian Kong, Andrey Komarov, Mariusz Klimczak, Ryszard Buczyński, Xiahui Tang, Ming Tang, Yuwen Qin, Luming Zhao. Nonlinear Fourier transform enabled eigenvalue spectrum investigation for fiber laser radiation[J]. Photonics Research, 2021, 9(8): 1531
    Download Citation