• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 2, 020501 (2023)
Yulong CAI, Shuai CUI*, Yang LIU, Dongdong ZHANG, Yuli LU, and Yong ZHANG
Author Affiliations
  • Shanghai Engineering Center for Microsatellites, Innocation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai 201203, China
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.020501 Cite this Article
    Yulong CAI, Shuai CUI, Yang LIU, Dongdong ZHANG, Yuli LU, Yong ZHANG. Passive shielding against proton and electron in the inner radiation belt[J]. NUCLEAR TECHNIQUES, 2023, 46(2): 020501 Copy Citation Text show less
    References

    [1] Fujita Y, Myojoyama A, Saitoh H. Bremsstrahlung and photoneutron production in a steel shield for 15-22-MeV clinical electron beams[J]. Radiation Protection Dosimetry, 163, 148-159(2014).

    [2] Fujimoto T, Monzen H, Nakata M et al. Dosimetric shield evaluation with tungsten sheet in 4, 6, and 9 MeV electron beams[J]. Physica Medica, 30, 838-842(2014).

    [3] Sajid M, Chechenin N G, Sill Torres F et al. Analysis of total ionizing dose effects for highly scaled CMOS devices in low earth orbit[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 428, 30-37(2018).

    [4] HU Jianhang, FENG Ying, HAN Jianwei et al. Simulation and validation of composite shielding for total ionizing dose[J]. Chinese Journal of Space Science, 34, 180-185(2014).

    [5] Waterman G, Kase K, Orion I et al. Selective shielding of bone marrow: an approach to protecting humans from external gamma radiation[J]. Health Physics, 113, 195-208(2017).

    [6] XUN Mingzhu, HE Chengfa, ZHENG Yuzhan. Analysis of shielding ability of different materials for 100 MeV proton incident[J]. Manned Spaceflight, 24, 740-744(2018).

    [7] WANG Chaozhuang, LUO Wenyun, ZHA Yuanzi et al. Monte-Carlo simulation of optimization choice of shielding materials for proton radiation in space[J]. Radiation Protection, 27, 79-86, 105(2007).

    [8] WU Zhengxin, SUN Huibin, HE Chengfa et al. Analysis of radiation environment and its dose within sealed cabin of manned spacecraft[J]. Spacecraft Environment Engineering, 33, 154-157(2016).

    [9] Steffens M, Hepp F, Höffgen S K et al. Characterization of novel lightweight radiation shielding materials for space applications[J]. IEEE Transactions on Nuclear Science, 64, 2325-2332(2017).

    [10] van Allen J A, Frank L A. Radiation around the earth to a radial distance of 107, 400 km[J]. Nature, 183, 430-434(1959).

    [11] Stassinopoulos E G, Raymond J P. The space radiation environment for electronics[J]. Proceedings of the IEEE, 76, 1423-1442(1988).

    [12] Nakamura K, Group P D. Review of particle physics[J]. Journal of Physics G: Nuclear and Particle Physics, 37, 075021(2010).

    [13] Heynderickx D, Quaghebeur B, Wera J et al. New radiation environment and effects models in the European Space Agency's Space Environment Information System (SPENVIS)[J]. Space Weather, 2, S10S03(2004).

    [14] Lei F, Truscott R R, Dyer C S et al. MULASSIS: a Geant4-based multilayered shielding simulation tool[J]. IEEE Transactions on Nuclear Science, 49, 2788-2793(2002).

    [15] Mangeret R, Carriere T, Beaucour J et al. Effects of material and/or structure on shielding of electronic devices[J]. IEEE Transactions on Nuclear Science, 43, 2665-2670(1996).

    [16] Fan W C, Drumm C R, Roeske S B et al. Shielding considerations for satellite microelectronics[J]. IEEE Transactions on Nuclear Science, 43, 2790-2796(1996).

    Yulong CAI, Shuai CUI, Yang LIU, Dongdong ZHANG, Yuli LU, Yong ZHANG. Passive shielding against proton and electron in the inner radiation belt[J]. NUCLEAR TECHNIQUES, 2023, 46(2): 020501
    Download Citation