• Acta Photonica Sinica
  • Vol. 50, Issue 10, 1030003 (2021)
Xuyang LIU1, Dacheng ZHANG1、*, Zhongqi FENG1, Jie DING1, Runqiang YANG1, Sijia SUN1, Kejian WANG1, Jiangfeng ZHU1, and Zhiyi WEI2
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering,Xidian University,Xi'an 710071,China
  • 2Institute of Physics,Chinese Academy of Science,Beijing 100190,China
  • show less
    DOI: 10.3788/gzxb20215010.1030003 Cite this Article
    Xuyang LIU, Dacheng ZHANG, Zhongqi FENG, Jie DING, Runqiang YANG, Sijia SUN, Kejian WANG, Jiangfeng ZHU, Zhiyi WEI. Discrimination of Aviation Alloy by Remote Laser-induced Breakdown Spectroscopy Technology[J]. Acta Photonica Sinica, 2021, 50(10): 1030003 Copy Citation Text show less
    References

    [1] J SARMA, R KUMAR, A SAHOO et al. Enhancement of material properties of titanium alloys through heat treatment process: A brief review. Materials Today: Proceedings, 23, 561-564(2019).

    [2] F BOUÉ. Laser-induced breakdown spectroscopy applications in the steel industry: Rapid analysis of segregation and decarburization. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 1122-1129(2008).

    [3] Jiaojian SONG, Ye TIAN, Yuan LU et al. Comparative investigation of underwater-LIBS using 532 and 1 064 nm lasers. Spectroscopy & Spectral Analysis, 34, 3104-3108(2014).

    [4] H ZHENG, F Y YUEH, T MILLER et al. Analysis of plutonium oxide surrogate residue using laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 968-974(2008).

    [5] R PEREZ, R NEWELL, S ROBINSON et al. In the supercam instrument on the NASA Mars 2020 mission: optical design and performance. International Conference on Space Optics(2018).

    [6] A ANDERSON, H MUKUNDAN, R MCINROY et al. In combined LIBS-Raman for remote detection and characterization of biological samples. Imaging, Manipulation, & Analysis of Biomolecules, Cells, & Tissues XIII(2015).

    [7] F C DE LUCIA, J L GOTTFRIED, C A MUNSON et al. Double pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination. Spectrochimica Acta Part B:Atomic Spectroscopy, 62, 1399-1404(2007).

    [8] T FISCHBACH, V ALEKSEJEV, F DUSCHEK et al. Standoff detection of chemical and biological substances using laser induced fluorescence technique(2014).

    [9] C FRANK, L DE, L JENNIFER et al. Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy. Applied Optics, 51, B83-B92(2012).

    [10] C FERRI, O HERN, R JMODROIU. An experimental comparison of performance measures for classification. Pattern Recognition Letters, 30, 27-38(2009).

    [11] Tianlong ZHANG, Hongsheng TANG, Hua LI. Chemometrics in laser-induced breakdown spectroscopy. Journal of Chemometrics, 32, S0584854707003527(2018).

    [12] Qianqian WANG, Zhiwen HUANG, Kai LIU et al. Classification of plastics with laser-induced breakdown spectroscopy based on principal component analysis and artificial neural network model. Spectroscopy & Spectral Analysis, 32, 3179-3182(2012).

    [13] S W HUDSON, J CRAPARO, S DE et al. Applications of laser-induced breakdown spectroscopy (LIBS) in molten metal processing. Metallurgical and Materials Transactions B, 48, 2731-2742(2017).

    [14] M TAMPO, M MIYABE, K AKAOKA et al. Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling. Journal of Analytical Atomic Spectrometry, 29, 886-892(2014).

    [15] S KALAM, S AJMATHULLARAO. Discrimination of bimetallic alloy targets using femtosecond filament-induced breakdown spectroscopy in standoff mode. Optics Letters, 43, 3465-3468(2018).

    [16] E KIM, Y KIM, E SRIVASTAVA et al. Soft classification scheme with pre-cluster-based regression for identification of same-base alloys using laser-induced breakdown spectroscopy. Chemometrics and Intelligent Laboratory Systems, 203, 104072(2020).

    [17] Long LIANG, Tianlong ZHANG, Kang WANG et al. Classification of steel materials by laser-induced breakdown spectroscopy coupled with support vector machines. Applied Optics, 53, 544-552(2014).

    [18] Yong XIN, Yang LI, Wei LI et al. In-situ analysis of molten aluminum by laser-induced breakdown spectroscopy system. Acta Photonica Sinica, 47, 0847002(2018).

    [19] Liuyang ZHAN, Xiaohong MA, Weiqi FANG et al. A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm. Plasma Science & Technology, 21, 034018(2019).

    [20] Kaichen GUO, Zhongchen WU, Xiangping ZHU et al. Mineral element abundance identification based on libs emission line selection by loading space distance of principal component analysis. Acta Photonica Sinica, 48, 1030002(2019).

    [21] Dacheng ZHANG, Zhongqi FENG, Xiaogang LI et al. Quantitative analysis of aluminium alloy with remote laser-induced breakdown spectroscopy. Acta Photonica Sinica, 47, 0847010(2018).

    [22] Zhongqi FENG, Dacheng ZHANG, Minchao CUI et al. Recognition of aerial alloy grades by laser-induced breakdown spectroscopy. Metallurgical Anglysis, 40, 99-104(2020).

    [23] I WITTEN, E HFRANK. Data mining: practical. machine learning tools and techniques (third edition)(2005).

    Xuyang LIU, Dacheng ZHANG, Zhongqi FENG, Jie DING, Runqiang YANG, Sijia SUN, Kejian WANG, Jiangfeng ZHU, Zhiyi WEI. Discrimination of Aviation Alloy by Remote Laser-induced Breakdown Spectroscopy Technology[J]. Acta Photonica Sinica, 2021, 50(10): 1030003
    Download Citation