[1] Q HUANG, X CHEN, S HUANG et al. Substance and Internet use during the COVID-19 pandemic in China. Translational Psychiatry, 11, 491-498(2021).
[2] A W ELSHAARI, W PERNICE, K SRINIVASAN et al. Hybrid integrated quantum photonic circuits. Nature Photonics, 14, 285-298(2020).
[3] D GRASSANI, E TAGKOUDI, H GUO et al. Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum. Nature Communications, 10, 1553-1560(2019).
[4] J LIU, G HUANG, R N WANG et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nature Communications, 12, 2236-2244(2021).
[5] A RAO, G MOILLE, X LU et al. Towards integrated photonic interposers for processing octave-spanning microresonator frequency combs. Light: Science & Applications, 10, 109-121(2021).
[6] C ROGERS, A Y PIGGOTT, D J THOMSON et al. A universal 3D imaging sensor on a silicon photonics platform. Nature, 590, 256-261(2021).
[7] H LIN, Z LUO, T GU et al. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics, 7, 393-420(2017).
[8] I W HSIEH, X CHEN, X LIU et al. Supercontinuum generation in silicon photonic wires. Optics Express, 15, 15242-15249(2007).
[9] P KOONATH, D R SOLLI, B JALALI. Limiting nature of continuum generation in silicon. Applied Physics Letters, 93, 1114-1129(2008).
[10] B J EGGLETON, B LUTHER-DAVIES, K RICHARDSON. Chalcogenide photonics. Nature Photonics, 5, 141-148(2011).
[11] D D HUDSON, S A DEKKER, E C MÄGI et al. Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy. Optics Letters, 36, 1122-1124(2011).
[12] D D HUDSON, E C MÄGI, A C JUDGE et al. Highly nonlinear chalcogenide glass micro/nanofiber devices: design, theory, and octave-spanning spectral generation. Optics Communications, 285, 4660-4669(2012).
[13] D I YEOM, E C MÄGI, M R LAMONT et al. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Optics Letters, 33, 660-662(2008).
[14] G P AGRAWAL. Nonlinear fiber optics. Nonlinear Science at the Dawn of the 21st Century, 195-211(2000).
[15] G GENTY, M LEHTONEN, H LUDVIGSEN et al. Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers. Optics Express, 10, 1083-1098(2002).
[16] J HERRMANN, U GRIEBNER, N ZHAVORONKOV et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Physical Review Letters, 88, 173901(2002).
[17] T GODIN, Y COMBES, R AHMAD et al. Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires. Optics Letters, 39, 1885-1888(2014).
[18] N ABDUKERIM, L LI, M ROCHETTE. Chalcogenide-based optical parametric oscillator at 2 μm. Optics Letters, 41, 4364-4367(2016).
[19] I ALAMGIR, F ST-HILAIRE, M ROCHETTE. All-fiber nonlinear optical wavelength conversion system from the C-band to the mid-infrared. Optics Letters, 45, 857-860(2020).
[20] M R LAMONT, B LUTHER-DAVIES, D Y CHOI et al. Supercontinuum generation in dispersion engineered highly nonlinear (γ= 10/W/m) As2S3 chalcogenide planar waveguide. Optics Express, 16, 14938-14944(2008).
[21] X GAI, S MADDEN, D Y CHOI et al. Dispersion engineered Ge 11.5 As24Se64.5 nanowires with a nonlinear parameter of 136W- 1 m- 1 at 1 550 nm. Optics Express, 18, 18866-18874(2010).
[22] M R KROGSTAD, S AHN, W PARK et al. Optical characterization of chalcogenide Ge-Sb-Se waveguides at telecom wavelengths. IEEE Photonics Technology Letters, 28, 2720-2723(2016).
[23] H SHANG, D SUN, M ZHANG et al. On-chip detector based on supercontinuum generation in chalcogenide waveguide. Journal of Lightwave Technology, 39, 3890-3895(2021).
[24] B UNG, M SKOROBOGATIY. Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared. Optics Express, 18, 8647-8659(2010).