• Study On Optical Communications
  • Vol. 49, Issue 6, 11 (2023)
Mian WU1, Lin WU1,a, and Jin TAO1,2,*
Author Affiliations
  • 1a. National Key Laboratory of Optical Communication Technologies and Networks; b. National Optoelectronics Innovation Center, China Information Communication Technologies Group Corporation, Wuhan 430074, China
  • 2Peng Cheng Laboratory, Shenzhen 518000, China
  • show less
    DOI: 10.13756/j.gtxyj.2023.06.002 Cite this Article
    Mian WU, Lin WU, Jin TAO. Recent Progress and Comment on Metasurface Devices based on Two-photon 3D Printing[J]. Study On Optical Communications, 2023, 49(6): 11 Copy Citation Text show less
    References

    [1] Yu N F, Genevet P, Kats A M et al. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction[J]. Science, 334, 333-337(2011).

    [2] Sun S L, He Q, Xiao S Y et al. Gradient-index Meta-surfaces as a Bridge Linking Propagating Waves and Surface Waves[J]. Nature Materials, 11, 426-431(2012).

    [3] Yu N F, Capasso F. Flat Optics with Designer Metasurfaces[J]. Nature Materials, 13, 139-150(2014).

    [4] Kruk S, Ferreira F, Suibhne N M et al. Transparent Dielectric Metasurfaces for Spatial Mode Multiplexing[J]. Laser & Photonics Reviews, 12, 1800031(2018).

    [5] Tao J, You Q, Li Z et al. Mass-manufactured Beam-steering Metasurfaces for High-speed Full-duplex Optical Wireless-broadcasting Communications[J]. Advanced Materials, 34, 2106080(2022).

    [6] Qiu Y, Tao J, Liu Z C et al. Investigation of Fan In and Fan Out Technologies for Multi Core Fiber[J]. Study on Optical Communications, 42-48(2021).

    [7] Wang Y, Tao J, Liu Z C et al. Study on Optical Power Splitting Technique based on Silicon Metasurfaces(Invited)[J]. Study on Optical Communications, 38-41(2017).

    [8] Maruo S, Nakamura O, Kawata S. Three-dimensional Microfabrication with Two-photon-absorbed Photopolymerization[J]. Optics Letters, 22, 132-134(1997).

    [9] Liu M N, Li M T, Sun H B. 3D Femtosecond Laser Nanoprinting[J]. Laser & Optoelectronics Progress, 55, 011410(2018).

    [10] Yang D, Liu L P, Yang H et al. Laser Micro-nano Three-dimensional Printing[J]. Laser & Optoelectronics Progress, 55, 011411(2018).

    [11] Zhao Y Y, Luo H C, Liang Z X et al. Micro-nano 3D Printing based on Photopolymerization and Its Development Status and Trends[J]. Chinese Journal of Lasers, 49, 1002703(2022).

    [12] Cumpston B H, Ananthavel S P, Barlow S et al. Two-photon Polymerization Initiators for Three-dimensional Optical Data Storage and Microfabrication[J]. Nature, 398, 51-54(1999).

    [13] Kawata S, Sun H B, Tanaka T et al. Finer Features for Functional Microdevices[J]. Nature, 412, 697-698(2001).

    [14] Kaiser W, Garrett C G. Two-photon Excitation in Caf2: Eu2+[J]. Physical Review Letters, 7, 229-231(1961).

    [15] Lin W, Chen D H, Chen S-C. Emerging Micro-additive Manufacturing Technologies Enabled by Novel Optical Methods[J]. Photonics Research, 8, 1827-1842(2020).

    [16] Somers P, Liang Z, Johnson J E et al. Rapid, Continuous Projection Multi-photon 3D Printing Enabled by Spatiotemporal Focusing of Femtosecond Pulses[J]. Light: Science & Applications, 10, 199(2021).

    [17] Saha S K, Wang D, Nguyen V H et al. Scalable Submicrometer Additive Manufacturing[J]. Science, 366, 105-109(2019).

    [18] Gissibl T, Thiele S, Herkommer A et al. Sub-micrometre Accurate Free-form Optics by Three-dimensional Printing on Single-mode Fibres[J]. Nature Communications, 7, 11763(2016).

    [19] Raman R, Bhaduri B, Mir M et al. High-resolution Projection Microstereolithography for Patterning of Neovasculature[J]. Advanced Healthcare Materials, 5, 610-619(2016).

    [20] McGregor D J, Tawfick S, King W P. Mechanical Properties of Hexagonal Lattice Structures Fabricated Using Continuous Liquid Interface Production Additive Manufacturing[J]. Additive Manufacturing, 25, 10-18(2019).

    [21] Gan Z S, Cao Y Y, Evans R A et al. Three-dimensional Deep Sub-diffraction Optical Beam Lithography with 9 nm Feature Size[J]. Nature Communications, 4, 2061(2013).

    [22] Hahn V, Mayer F, Thiel M et al. 3-D Laser Nanoprinting[J]. Optics and Photonics News, 30, 28-35(2019).

    [23] Tanaka T, Sun H B, Kawata S. Rapid Sub-diffraction-limit Laser Micro/Nanoprocessing in a Threshold Material System[J]. Applied Physics Letters, 80, 312-314(2002).

    [24] Takada K, Sun H B, Kawata S. Improved Spatial Resolution and Surface Roughness in Photopolymerization-based Laser Nanowriting[J]. Applied Physics Letters, 86, 071122(2005).

    [25] Xing J F, Dong X Z, Chen W Q et al. Improving Spatial Resolution of Two-photon Microfabrication by Using Photoinitiator with High Initiating Efficiency[J]. Applied Physics Letters, 90, 131106(2007).

    [26] Hahn V, Kiefer P, Frenzel T et al. Rapid Assembly of Small Materials Building Blocks (Voxels) into Large Functional 3D Metamaterials[J]. Advanced Functional Materials, 30, 1907795(2020).

    [27] Barnes W L, Dereux A, Ebbesen T W. Surface Plasmon Subwavelength Optics[J]. Nature, 424, 824-830(2003).

    [28] Gramotnev D K, Bozhevolnyi S I. Plasmonics Beyond the Diffraction Limit[J]. Nature Photonics, 4, 83-91(2010).

    [29] McLamb M, Park S, Stinson V P et al. Tuning of Reciprocal Plasmonic Metasurface Resonances by Ultra-thin Conformal Coatings[J]. Optics, 3, 70-78(2022).

    [30] Xiong X, Jiang S C, Hu Y S et al. Control the Polarization State of Light with Symmetry-broken Metallic Metastructures[J]. Annals of Physics, 358, 129-158(2015).

    [31] Micek P, Pudis D, Gaso P et al. Microring Zone Structure for Near-field Probes[J]. Coatings, 11, 1363(2021).

    [32] Bagheri S, Weber K, Gissibl T et al. Fabrication of Square-centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on Seira Enhancement[J]. ACS Photonics, 2, 779-786(2015).

    [33] Braun A, Maier S A. Versatile Direct Laser Writing Lithography Technique for Surface Enhanced Infrared Spectroscopy Sensors[J]. ACS Sensors, 1, 1155-1162(2016).

    [34] Mu J J, Liu Z G, Li J F et al. Direct Laser Writing of Pyramidal Plasmonic Structures with Apertures and Asymmetric Gratings Towards Efficient Subwavelength Light Focusing[J]. Optics Express, 23, 22564-22571(2015).

    [35] Jose B, Vijayaraghavan R K, Kent L et al. Tunable Metallic Nanostructures Using 3D Printed Nanosphere Templates[J]. Electrochemistry Communications, 98, 106-109(2019).

    [36] Sun S, Gao Y, Xiong X et al. Constructing Multifunctional Wave Plates with Stereo-aetastructure Arrays[J]. Optics Letters, 44, 1758-1761(2019).

    [37] Urbancova P, Goraus M, Pudis D et al. 2D Polymer/Metal Structures for Surface Plasmon Resonance[J]. Applied Surface Science, 530, 147279(2020).

    [38] Ye F, Avants B W, Veeraraghavan A et al. Integrated Light-sheet Illumination Using Metallic Slit Microlenses[J]. Optics Express, 26, 27326-27338(2018).

    [39] Thiele S, Pruss C, Herkommer A M et al. 3D Printed Stacked Diffractive Microlenses[J]. Optics Express, 27, 35621-35630(2019).

    [40] Hao C, Gao S, Ruan Q et al. Single-layer Aberration-compensated Flat Lens for Robust Wide-angle Imaging[J]. Laser & Photonics Reviews, 14, 2000017(2020).

    [41] Balli F, Sultan M, Lami S K et al. A Hybrid Achromatic Metalens[J]. Nature Communications, 11, 3892(2020).

    [42] He C, Sun T, Guo J J et al. Chiral Metalens of Circular Polarization Dichroism with Helical Surface Arrays in Mid-infrared Region[J]. Advanced Optical Materials, 7, 1901129(2019).

    [43] Ni H B, Yuan G H, Sun L D et al. Large-scale High-numerical-aperture Super-oscillatory Lens Fabricated by Direct Laser Writing Lithography[J]. RSC Advances, 8, 20117-20123(2018).

    [44] Zhou X, Wenger J, Viscomi N F et al. Two-color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength[J]. Nano Letters, 15, 7458-7466(2015).

    [45] Wang H, Ruan Q, Wang H et al. Full Color and Grayscale Painting with 3D Printed Low-index Nanopillars[J]. Nano Letters, 21, 4721-4729(2021).

    [46] Zhang W, Wang H, Tan T L A et al. Overcoming Van Der Walls Forces in Reconfigurable Nanostructures[DB/OL]. https://doi.org/10.48550/arXiv.2202.10648

    [47] Ren H, Fang X Y, Jang J et al. Complex-amplitude Metasurface-based Orbital Angular Momentum Holography in Momentum Space[J]. Nature Nanotechnology, 15, 948-955(2020).

    [48] Goi E, Chen X, Zhang Q M et al. Nanoprinted High-neuron-density Optical Linear Perceptrons Performing Near-infrared Inference on a Cmos Chip[J]. Light: Science & Applications, 10, 40(2021).

    [49] Yu J, Wang Y P, Yang W et al. All-fiber Focused Beam Generator Integrated on an Optical Fiber Tip[J]. Applied Physics Letters, 116, 241102(2020).

    [50] Yu J, Bai Z Y, Zhu G X et al. 3D Nanoprinted Kinoform Spiral Zone Plates on Fiber Facets for High-efficiency Focused Vortex Beam Generation[J]. Optics Express, 28, 38127-38139(2020).

    [51] Plidschun M, Ren H, Kim J et al. Ultrahigh Numerical Aperture Meta-fibre for Flexible Optical Trapping[J]. Light: Science & Applications, 4, 589-599(2021).

    [52] Ren H, Jang J, Li C H et al. An Achromatic Metafiber for Focusing and Imaging Across the Entire Telecommunication Range[J]. Nature Communications, 13, 4183(2022).

    [53] Xie Z W, Feng S F, Wang P J et al. Demonstration of a 3D Radar-like Sers Sensor Micro- and Nanofabricated on an Optical Fiber[J]. Advanced Optical Materials, 3, 1232-1239(2015).

    [54] Kim A J, Wales J D, Thompson J A et al. Fiber-optic SERS Probes Fabricated Using Two-photon Polymerization for Rapid Detection of Bacteria[J]. Advanced Optical Materials, 8, 1901934(2020).

    [55] Li Y C, Cheng L C, Chang C Y et al. Fast Multiphoton Microfabrication of Freeform Polymer Microstructures by Spatiotemporal Focusing and Patterned Excitation[J]. Optics Express, 20, 19030-19038(2012).

    [56] Fischer J, Wegener M. Three-dimensional Direct Laser Writing Inspired by Stimulated-emission-depletion Microscopy [Invited][J]. Optical Materials Express, 1, 614-624(2011).

    [57] Fischer J, Wegener M. Three-dimensional Optical Laser Lithography Beyond the Diffraction Limit[J]. Laser & Photonics Reviews, 7, 22-44(2013).

    [58] Wollhofen R, Katzmann J, Hrelescu C et al. 120 nm Resolution and 55 nm Structure Size in Sted-lithography[J]. Optics Express, 21, 10831-10840(2013).

    [59] Lio G E, Ferraro A, Ritacco T et al. Leveraging on ENZ Metamaterials to Achieve 2D and 3D Hyper-resolution in Two-photon Direct Laser Writing[J]. Advanced Materials, 33, 2008644(2021).

    [60] Wang Q, Jackson J A, Ge Q et al. Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion[J]. Physical Review Letters, 117, 175901(2016).

    [61] Mu Q Y, Wang L, Dunn C K et al. Digital Light Processing 3D Printing of Conductive Complex Structures[J]. Additive Manufacturing, 18, 74-83(2017).

    [62] Song X, Chen Y, Lee T W et al. Ceramic Fabrication Using Mask-image-projection-based Stereolithography Integrated with Tape-casting[J]. Journal of Manufacturing Processes, 20, 456-464(2015).

    [63] Choong Y Y C, Maleksaeedi S, Eng H et al. Curing Characteristics of Shape Memory Polymers in 3D Projection and Laser Stereolithography[J]. Virtual and Physical Prototyping, 12, 77-84(2017).

    [64] Han D, Farino C, Yang C et al. Soft Robotic Manipulation and Locomotion with a 3D Printed Electroactive Hydrogel[J]. ACS Applied Materials & Interfaces, 10, 17512-17518(2018).

    [65] Han F, Gu S, Klimas A et al. Three-dimensional Nanofabrication Via Ultrafast Laser Patterning and Kinetically Regulated Material Assembly[J]. Science, 378, 1325-1331(2022).

    [66] Hui Y, Yao Y, Qian Q et al. Three-dimensional Printing of Soft Hydrogel Electronics[J]. Nature Electronics, 5, 893-903(2022).

    [67] Yang Y, Chen Z, Song X et al. Three Dimensional Printing of High Dielectric Capacitor Using Projection based Stereolithography Method[J]. Nano Energy, 22, 414-421(2016).

    [68] Yang L, Mayer F, Bunz U H F et al. Multi-material Multi-photon 3D Laser Micro- and Nanoprinting[J]. Light: Advanced Manufacturing, 2, 17(2021).

    Mian WU, Lin WU, Jin TAO. Recent Progress and Comment on Metasurface Devices based on Two-photon 3D Printing[J]. Study On Optical Communications, 2023, 49(6): 11
    Download Citation