[1] XIONG W, KONG L, KONG F, et al. Millimeter wave communication: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 1616-1653.
[2] RAPPAPORT T S, XING Y, MACCARTNEY G R, et al. Overview of millimeter wave communications for fifth-generation(5G) wireless networks-with a focus on propagation models[J]. IEEE Transactions on Antennas & Propagation, 2017, 65(12): 6213-6230.
[3] CHIH-LIN I. RAN Revolution with NGFI (xHaul) for 5G[C]//IEEE. 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles: IEEE, 2017: 1-4.
[4] RANAWEERA C, WONG E, NIRMALATHAS A, et al. 5G C-RAN with optical fronthaul: an analysis from a deployment perspective[J]. Journal of Lightwave Technology, 2018, 36(11): 2059-2068.
[5] LIU X, ZENG H Y, CHAND N, et al. Efficient mobile fronthaul via DSP-based channel aggregation[J]. Journal of Lightwave Technology: A Joint IEEE/OSA Publication, 2016, 34(6): 1556-1564.
[6] DAT P T, KANNO A, YAMAMOTO N, et al. 190-Gb/s CPRI-equivalent rate fiber-wireless mobile fronthaul for simultaneous transmission of LTE-A and F-OFDM signals[C]//VDE. 42nd European Conference on Optical Communication, Dusseldorf: VDE, 2016: 1-3.
[7] CHO S H, PARK H, CHUNG H S. Cost-effective next generation mobile fronthaul architecture with multi-IF carrier transmission scheme[C]// IEEE. OFC 2014, San Francisco: IEEE, 2014: 1-3.
[8] MA Y, XU Z, LIN H, et al. Demonstration of CPRI over self-seeded WDM-PON in commercial LTE environment[C]//IEEE. 2015 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles: IEEE, 2015: 1-3.
[9] BAE S H, SHIM H K, HONG U H, et al. 25-Gb/s TDM optical link using EMLs for mobile fronthaul network of LTE-A system[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1825-1828.
[10] CAO Z, YU J, XIA M, et al. Reduction of intersubcarrier interference and frequency-selective fading in OFDM-ROF systems[J]. Journal of Lightwave Technology, 2010, 28(16): 2423-2429.
[11] KHWANDAH S A, COSMAS J P, GLOVER I A, et al. Direct and external intensity modulation in OFDM RoF links[C]//IEEE. Photonics Journal, [s.l.]: IEEE, 2015: 7902710-1-7902710-10
[12] ROBERTSON P, KAISER S. The effects of Doppler spreads in OFDM(A) mobile radio systems[C]//IEEE. Gateway to 21st Century Communications Village, Netherlands: IEEE, 1999: 329-333.
[13] MOURAD H A. Reducing ICI in OFDM systems using a proposed pulse shape[J]. Wireless Personal Communications, 2007, 40(1): 41-48.
[14] ZHAO Z, SCHELLMANN M, GONG X, et al. Pulse shaped OFDM for 5G systems[EB/OL]. [2022-04-26]. https://arxiv.org/pdf/1605.03731.pdf
[15] REN X M, WEI-MING N I. A channel estimator for multi-carrier system in fast time-varying fading channels[J]. Journal of Fudan University(Natural Science), 2007,46(1): 101-105.
[16] DAT P T, KANNO A, INAGAKI K, et al. High-capacity wireless backhaul network using seamless convergence of radio-over-fiber and 90GHz millimeter-wave[J]. Journal of Lightwave Technology, 2014, 32: 3910-3923.
[17] JAMES J, SHEN P, NKANSAH A, et al. Nonlinearity and noise effects in multi-level signal millimeter-wave over fiber transmission using single and dual wavelength modulation[J]. IEEE Transactions on Microwave Theory & Techniques, 2010, 58(11): 3189-3198.
[18] NKANSAH A, DAS A, GOMES N J, et al. Multilevel modulated signal transmission over serial single-mode and multimode fiber links using vertical-cavity surface-emitting lasers for millimeter-wave wireless communications[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(6): 1219-1228.
[19] TIWARI S, DAS S S, RANGAMGARI V. Low complexity LMMSE receiver for OTFS[J]. IEEE Communications Letters, 2019, 23(12): 2205-2209.
[20] LANNOO B, COLLE D, PICKAVET M, et al. Radio-over-fiber-based solution to provide broadband internet access to train passengers [Topics in Optical Communications][J]. IEEE Communications Magazine, 2007, 45(2): 56-62.
[21] ZHANG J Y, TAN Z H, YU X X. Coverage efficiency of radio-over-fiber network for high-speed railways[C]//IEEE. 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), Chengdu: IEEE, 2010: 1-4.
[22] KANNO A, DAT P T, UMEZAWA T, et al. High-speed railway communication system using linear-cell-based radio-over-fiber network and its field trial in 90-GHz bands[J]. Journal of Lightwave Technology, 2019, 39(1): 112-122.
[23] KANNO A, DAT P T, YAMAMOTO N, et al. Radio over fiber signal generation and distribution and its application to train communication network[C]//IEEE. 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Singapore: IEEE, 2017: 1-2.
[24] DAT P T, KANNO A, YAMAMOTO N, et al. WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications[J]. Communications Magazine IEEE, 2015, 53(10): 86-94.
[25] SUNG M, KIM J, KIM E S, et al. RoF-based radio access network for 5G mobile communication systems in 28 GHz millimeter-wave[J]. Journal of Lightwave Technology, 2020, 38(2): 409-420.
[26] HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]// IEEE. 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu: IEEE, 2017: 681-683.
[29] RAMACHANDRAN M K, SURABHI G D, CHOCKALINGAM A. OTFS: a new modulation scheme for high-mobility use cases[J]. Journal of the Indian Institute of Science, 2020(4): 315-336.
[30] DAT P T, KANNO A, KAWANISHI T. Performance of a 90-GHz radio-on-radio-over-fiber system suitable for communications in high-speed railways[C]// IEEE. 2014 IEEE MTT-S International Microwave Symposium, Tampa: IEEE, 2014:1-4.
[32] THAJ T, VITERBO E. Orthogonal time sequency multiplexing modulation[J].IEEE Transactions on Wireless Communications, 2021, 20(12): 7842-7855.