• Frontiers of Optoelectronics
  • Vol. 9, Issue 2, 160 (2016)
Ming LI* and Ninghua ZHU
Author Affiliations
  • State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.1007/s12200-016-0633-0 Cite this Article
    Ming LI, Ninghua ZHU. Recent advances in microwave photonics[J]. Frontiers of Optoelectronics, 2016, 9(2): 160 Copy Citation Text show less
    References

    [1] Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319–330

    [2] Yao J. Microwave photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335

    [3] Waterhouse R, Novack D. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microwave Magazine, 2015, 16 (8): 84–92

    [4] Iezekiel S, Burla M, Klamkin J, Marpaung D, Capmany J. RF engineering meets optoelectronics: progress in integrated microwave photonics. IEEE Microwave Magazine, 2015, 16(8): 28–45

    [5] Ghelfi P, Laghezza F, Scotti F, Serafino G, Pinna S, Onori D, Lazzeri E, Bogoni A. Photonics in radar systems: RF integration for state-of-the-art functionality. IEEE Microwave Magazine, 2015, 16(8): 74–83

    [6] Capmany J, Li G, Lim C, Yao J. Microwave photonics: current challenges towards widespread application. Optics Express, 2013, 21(19): 22862–22867

    [7] Marpaung D, Roeloffzen C, Heideman R, Leinse A, Sales S, Capmany J. Integrated microwave photonics. Laser & Photonics Reviews, 2013, 7(4): 506–538

    [8] Xie L, Man J W, Wang B J, Liu Y, Wang X, Yuan H Q, Zhao L J, Zhu H L, Zhu N H, Wang W. 24-GHz directly modulated DFB laser modules for analog applications. IEEE Photonics Technology Letters, 2012, 24(5): 407–409

    [9] Li S, Zheng X, Zhang H, Zhou B. Compensation of dispersioninduced power fading for highly linear radio-over-fiber link using carrier phase-shifted double sideband modulation. Optics Letters, 2011, 36(4): 546–548

    [10] Zheng X, Zhang G, Li S, Zhang H, Zhou B. All-optical signal processing for linearity enhancement of Mach-Zehnder modulators. Chinese Science Bulletin, 2014, 59(22): 2655–2660

    [11] Wang X, Liu Z, Wang S, Sun D, Dong Y, Hu W. Photonic radiofrequency dissemination via optical fiber with high-phase stability. Optics Letters, 2015, 40(11): 2618–2621

    [12] Deng Y, Li M, Tang J, Sun S, Huang N, Zhu N. Widely tunable single-passband microwave photonic filter based on DFB-SOAassisted optical carrier recovery. IEEE Photonics Journal, 2015, 7 (5): 5501108-1–5501108-8

    [13] Zhu N H, Zhang H G, Man JW, Zhu H L, Ke J H, Liu Y,Wang X, Yuan H Q, Xie L, Wang W. Microwave generation in an electroabsorption modulator integrated with a DFB laser subject to optical injection. Optics Express, 2009, 17(24): 22114–22123

    [14] Pan B, Lu D, Sun Y, Yu L, Zhang L, Zhao L. Tunable optical microwave generation using self-injection locked monolithic dualwavelength amplified feedback laser. Optics Letters, 2014, 39(22): 6395–6398

    [15] Lu D, Pan B, Chen H, Zhao L. Frequency-tunable optoelectronic oscillator using a dual-mode amplified feedback laser as an electrically controlled active microwave photonic filter. Optics Letters, 2015, 40(18): 4340–4343

    [16] Zou L, Huang Y, Lv X, Liu B, Long H, Yang Y, Xiao J, Du Y. Modulation characteristics and microwave generation for AlGaInAs/ InP microring lasers under four-wave mixing. Photonics Research, 2014, 2(6): 177–181

    [17] Zou L, Liu B, Lv X, Yang Y, Xiao J, Huang Y. Integrated semiconductor twin-microdisk laser under mutually optical injection. Applied Physics Letters, 2015, 106(19): 191107-1–191107-4

    [18] Yu H, Chen M, Guo Q, Hoekman M, Chen H, Leinse A, Heideman R G, Yang S, Xie S. A full-band RF photonic receiver based on the integrated ultra-high Q bandpass filter. In: Proceedings of Optical Fiber Communication Conference and Exhibition. 2015, 1–3

    [19] Yu H, Chen M, Guo Q, Hoekman M, Chen H, Leinse A, Heideman R G, Mateman R, Yang S, Xie S. All-optical full-band RF receiver based on an integrated ultra-high-Q bandpass filter. Journal of Lightwave Technology, 2016, 34(2): 701–706

    [20] Shi T, Xiong B, Sun C, Luo Y. Back-to-back UTC-PDs with high responsivity, high saturation current and wide bandwidth. IEEE Photonics Technology Letters, 2013, 25(2): 136–139

    [21] Huang J, Sun C, Song Y, Xiong B, Luo Y. Influence of master laser's lineshape on the optically generated microwave carrier by injection locking. Applied Physics Express, 2009, 2(7): 072502-1– 072502-3

    [22] Long Y, Wang J. Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator. Optics Express, 2015, 23(14): 17739–17750

    [23] Dong J, Liu L, Gao D, Yu Y, Zheng A, Yang T, Zhang X. Compact notch microwave photonic filters using on-chip integrated microring resonators. IEEE Photonics Journal, 2013, 5(2): 5500307-1– 5500307-8

    [24] Xie J, Zhou L, Li Z, Wang J, Chen J. Seven-bit reconfigurable optical true time delay line based on silicon integration. Optics Express, 2014, 22(19): 22707–22715

    [25] Wu J, Peng J, Liu B, Pan T, Zhou H, Mao J, Yang Y, Qiu C, Su Y. Passive silicon photonic devices for microwave photonic signal processing. Optics Communications, 2015, doi:10.1016/j.optcom. 2015.07.045

    [26] Wu X M, Man JW, Xie L, Liu Y, Qi X Q,Wang L X, Liu J G, Zhu N H. Novel method for frequency response measurement of optoelectronic devices. IEEE Photonics Technology Letters, 2012, 24(7): 575–577

    [27] Zhang S,Wang H, Zou X, Zhang Y, Lu R, Liu Y. Extinction-ratioindependent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne. Optics Letters, 2015, 40(12): 2854–2857

    [28] Wang H, Zhang S, Zou X, Zhang Y, Lu R, Zhang Z, Liu Y. Calibration-free and bias-drift-free microwave characterization of dual-drive Mach-Zehnder modulators using heterodyne mixing. Optical Engineering, 2016, 55(3): 031109-1–031109-6

    [29] Zhang S, Wang H, Zou X, Zhang Y, Lu R, Liu Y. Self-calibrating measurement of high-speed electro-optic phase modulators based on two-tone modulation. Optics Letters, 2014, 39(12): 3504–3507

    [30] Zhang S,Wang H, Zou X, Zhang Y, Lu R, Liu Y. Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning. IEEE Photonics Journal, 2014, 6(4): 5501008-1–5501008-8

    [31] Zhang S, Wang H, Zou X, Zhang Y, Lu R, Li H, Liu Y. Optical frequency-detuned heterodyne for self-referenced measurement of photodetectors. IEEE Photonics Technology Letters, 2015, 27(9): 1014–1017

    [32] Li S, Zheng X, Zhang H, Zhou B. Compensation of dispersioninduced power fading for highly linear radio-over-fiber link using carrier phase-shifted double sideband modulation. Optics Letters, 2011, 36(4): 546–548

    [33] Zheng X, Zhang G, Li S, Zhang H, Zhou B. All-optical signal processing for linearity enhancement of Mach-Zehnder modulators. Chinese Science Bulletin, 2014, 59(22): 2655–2660

    [34] Zhang G, Zheng X, Li S, Zhang H, Zhou B. Postcompensation for nonlinearity of Mach-Zehnder modulator in radio-over-fiber system based on second-order optical sideband processing. Optics Letters, 2012, 37(5): 806–808

    [35] Zhang G, Li S, Zheng X, Zhang H, Zhou B, Xiang P. Dynamic range improvement strategy for Mach-Zehnder modulators in microwave/millimeter-wave ROF links. Optics Express, 2012, 20 (15): 17214–17219

    [36] Zhang G, Zheng X, Li S.Millimeter-wave over fiber transmitter with subcarrier upconversion and nonlinear compensation. In: Proceedings of Asia-Pacific Microwave Photonics Conference, 2012

    [37] Song Y, Li S, Zheng X, Zhang H, Zhou B. True time-delay line with high resolution and wide range employing dispersion and optical spectrum processing. Optics Letters, 2013, 38(17): 3245– 3248

    [38] Li L, Zhang G, Zheng X, Li S, Zhang H, Zhou B. Suppression for dispersion induced phase noise of an optically generated millimeter wave employing optical spectrum processing. Optics Letters, 2012, 37(19): 3987–3989

    [39] Zhou X, Zheng X, Wen H, Zhang H, Zhou B. Optical arbitrary waveform generator applicable to pulse generation and chromatic dispersion compensation of a remote UWB over fiber system. Optics Express, 2011, 19(26): B391–B398

    [40] Xue X, Zheng X, Zhang H, Zhou B. Widely tunable singlebandpass microwave photonic filter employing a non-sliced broadband optical source. Optics Express, 2011, 19(19): 18423– 18429

    [41] Xue X, Zheng X, Zhang H, Zhou B. Highly reconfigurable microwave photonic single-bandpass filter with complex continuous- time impulse responses. Optics Express, 2012, 20(24): 26929–26934

    [42] Yang J, Chan E H W, Wang X, Feng X, Guan B. Broadband photonic microwave phase shifter based on controlling two RF modulation sidebands via a Fourier-domain optical processor. Optics Express, 2015, 23(9): 12100–12110

    [43] Liu J, Guo N, Li Z, Yu C, Lu C. Ultrahigh-Q microwave photonic filter with tunable Q value utilizing cascaded optical-electrical feedback loops. Optics Letters, 2013, 38(21): 4304–4307

    [44] Xin X, Zhang L, Liu B, Yu J. Dynamic l-OFDMA with selective multicast overlaid. Optics Express, 2011, 19(8): 7847–7855

    [45] Zhang L, Xin X, Liu B, Zhao K, Yu C. A novel WDM-OFDMPON architecture with centralized lightwave and PolSK-assisted multicast overlay. In: Proceedings of National Fiber Optic Engineers Conference, Optical Society of America. 2010, JThA25

    [46] Liu B, Xin X, Zhang L, Yu J. 109.92-Gb/s WDM-OFDMA uni- PON with dynamic resource allocation and variable rate access. Optics Express, 2012, 20(10): 10552–10561

    [47] Zhang L, Xin X, Liu B, Wang Y, Yu J, Yu C. OFDM modulated WDM-ROF system based on PCF-supercontinuum. Optics Express, 2010, 18(14): 15003–15008

    [48] Wang X, Liu Z, Wang S, Sun D, Dong Y, Hu W. Photonic radiofrequency dissemination via optical fiber with high-phase stability. Optics Letters, 2015, 40(11): 2618–2621

    [49] Sun D, Dong Y, Shi H, Xia Z, Liu Z, Wang S, Xie W, Hu W. Distribution of high-stability 100.04 GHz millimeter wave signal over 60 km optical fiber with fast phase-error-correcting capability. Optics Letters, 2014, 39(10): 2849–2852

    [50] Sun D, Dong Y, Yi L, Wang S, Shi H, Xia Z, Xie W, Hu W. Photonic generation of millimeter and terahertz waves with high phase stability. Optics Letters, 2014, 39(6): 1493–1496

    [51] Wang S, Sun D, Dong Y, Xie W, Shi H, Yi L, Hu W. Distribution of high-stability 10 GHz local oscillator over 100 km optical fiber with accurate phase-correction system. Optics Letters, 2014, 39(4): 888–891

    [52] Feng D, Xie H, Chen G, Qian L, Sun J. Simultaneous generation of a frequency-multiplied and phase-shifted microwave signal with large tunability. Optics Express, 2014, 22(15): 18372–18378

    [53] Feng D, Sun J, Xie H. Control of the optical carrier to sideband ratio in optical double/single sideband modulation by the phase variation of RF signals. Optics Communications, 2015, 353: 30–34

    [54] Feng D, Xie H, Qian L, Bai Q, Sun J. Photonic approach for microwave frequency measurement with adjustable measurement range and resolution using birefringence effect in highly non-linear fiber. Optics Express, 2015, 23(13): 17613–17621

    [55] Chi H, Mei Y, Chen Y, Wang D, Zheng S, Jin X, Zhang X. Microwave spectral analysis based on photonic compressive sampling with random demodulation. Optics Letters, 2012, 37 (22): 4636–4638

    [56] Chen Y, Yu X, Chi H, Jin X, Zhang X, Zheng S, Galili M. Compressive sensing in a photonic link with optical integration. Optics Letters, 2014, 39(8): 2222–2224

    [57] Chen Y, Yu X, Chi H, Zheng S, Zhang X, Jin X, Galili M. Compressive sensing with a microwave photonic filter. Optics Communications, 2015, 338: 428–432

    [58] Zhu Z, Chi H, Zheng S, Jin T, Jin X, Zhang X. Analysis of compressive sensing with optical mixing using a spatial light modulator. Applied Optics, 2015, 54(8): 1894–1899

    [59] Chen Y, Ding Y, Zhu Z, Chi H, Zheng S, Zhang X, Jin X, Galili M, Yu X. Photonic compressive sensing with a micro-ringresonator- based microwave photonic filter. Optics Communications, 2015, doi: 10.1016/j.optcom.2015.06.080

    [60] Chi H, Chen Y, Mei Y, Jin X, Zheng S, Zhang X. Microwave spectrum sensing based on photonic time stretch and compressive sampling. Optics Letters, 2013, 38(2): 136–138

    [61] Chen Y, Chi H, Jin T, Zheng S, Jin X, Zhang X. Sub-Nyquist sampled analog-to-digital conversion based on photonic time stretch and compressive sensing with optical random mixing. Journal of Lightwave Technology, 2013, 31(21): 3395–3401

    [62] Yang X, Xu K, Yin J, Dai Y, Yin F, Li J, Lu H, Liu T, Ji Y. Optical frequency comb based multi-band microwave frequency conversion for satellite applications. Optics Express, 2014, 22(1): 869– 877

    [63] Xu K, Wang R, Dai Y, Yin F, Li J, Ji Y, Lin J. Microwave photonics: radio-over-fiber links, systems, and applications. Photonics Research, 2014, 2(4): B54–B63

    [64] Yan J, Xia Z, Zhang S, Bai M, Zheng Z. A flexible waveforms generator based on a single dual-parallel Mach-Zehnder modulator. Optics Communications, 2015, 334: 31–34

    [65] Fang X, Bai M, Ye X, Miao J, Zheng Z. Ultra-broadband microwave frequency down-conversion based on optical frequency comb. Optics Express, 2015, 23(13): 17111–17119

    [66] Zhao X, Zheng Z, Liu L, Wang Q, Chen H, Liu J. Fast, long-scanrange pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser. Optics Express, 2012, 20(23): 25584–25589

    [67] Wei W, Yi L, Jaou n Y, Hu W. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber. Optics Express, 2014, 22(19): 23249–23260

    [68] Wei W, Yi L, Jaou n Y, Morvan M, Hu W. Brillouin rectangular optical filter with improved selectivity and noise performance. IEEE Photonics Technology Letters, 2015, 27(15): 1593–1596

    [69] Yi L, Wei W, Jaouen Y, Hu W. Ideal rectangular microwave photonic filter with high selectivity based on stimulated Brillouin scattering. In: Proceedings of Optical Fiber Communication Conference, Optical Society of America. 2015, Tu3F.5

    [70] Yi L, Wei W, Jaouen Y, Shi M, Han B, Morvan M, Hu W. Polarization-independent rectangular microwave photonic filter based on stimulated brillouin scattering. Journal of Lightwave Technology, 2016, 34(2): 669–675

    [71] Yi L, Wei W, Hu W. Design and performance evaluation of narrowband rectangula optical filter based on stimulated Brillouin scattering in fiber. In: Proceedings of International Conference on Optical Communications and Networks. 2014, 1–2

    [72] Yu J, Li X, Chi N. Faster than fiber: over 100-Gb/s signal delivery in fiber wireless integration system. Optics Express, 2013, 21(19): 22885–22904

    [73] Li X, Dong Z, Yu J, Chi N, Shao Y, Chang G K. Fiber-wireless transmission system of 108 Gb/s data over 80 km fiber and 2_2 multiple-input multiple-output wireless links at 100 GHz W-band frequency. Optics Letters, 2012, 37(24): 5106–5108

    [74] Li X, Yu J, Zhang J, Dong Z, Li F, Chi N. A 400G optical wireless integration delivery system. Optics Express, 2013, 21(16): 18812– 18819

    [75] Yu J, Li X, Zhang J, Xiao J. 432-Gb/s PDM-16QAM signal wireless delivery at W-band using optical and antenna polarization multiplexing. In: Proceedings of European Conference on Optical Communication. 2014, 1–3

    [76] Xiao J, Yu J, Li X, Xu Y, Zhang Z, Chen L. 40-Gb/s PDM-QPSK signal transmission over 160-m wireless distance at W-band. Optics Letters, 2015, 40(6): 998–1001

    [77] Li X, Yu J, Zhang Z, Xu Y. Field trial of 80-Gb/s PDM-QPSK signal delivery over 300-m wireless distance with MIMO and antenna polarization multiplexing at W-band. In: Proceedings of Optical Fiber Communication Conference, Optical Society of America. 2015, Th5A.5

    [78] Li X, Yu J, Xiao J. 1003 (100 Gb/s_100 m_100 GHz) optical wireless system. In: Proceedings of European Conference on Optical Communication. 2015, 1–3

    [79] Román J E, Frankel M Y, Esman R D. Spectral characterization of fiber gratings with high resolution. Optics Letters, 1998, 23(12): 939–941

    [80] Tang Z, Pan S, Yao J. A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator. Optics Express, 2012, 20(6): 6555– 6560

    [81] Pan S, Zhu D, Liu S, Xu K, Dai Y, Wang T, Liu J, Zhu N, Xue Y, Liu N. Satellite payloads pay off. IEEE Microwave Magazine, 2015, 16(8): 61–73

    [82] Fu J, Chen X, Pan S. A fiber-distributed multistatic ultra-wideband radar. In: Proceedings of International Conference on Optical Communications and Networks (ICOCN). 2015, 1–3

    [83] Zheng J, Zhang M, Wang A, Wang Y. Photonic generation of ultrawideband pulse using semiconductor laser with optical feedback. Optics Letters, 2010, 35(11): 1734–1736

    [84] Zhang M, Liu T, Wang A, Zheng J, Meng L, Zhang Z, Wang Y. Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser. Optics Letters, 2011, 36(6): 1008–1010

    [85] Zhang M, Ji Y, Zhang Y,Wu Y, Xu H, Xu W. Remote radar based on chaos generation and radio over fiber. IEEE Photonics Journal, 2014, 6(5): 7902412-1–7902412-12

    [86] Ji Y, Zhang M,Wang Y,Wang P,Wang A,Wu Y, Xu H, Zhang Y. Microwave-photonic sensor for remote water-level monitoring based on chaotic laser. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24(03): 1450032-1–1450032-7

    [87] Han X, Wang L, Wang Y, Zou P, Gu Y, Teng J, Wang J, Jian X, Morthier G, Zhao M. UV-soft imprinted tunable polymer waveguide ring resonator for microwave photonic filtering. Journal of Lightwave Technology, 2014, 32(20): 3924–3932

    [88] Li W, Wang W T, Sun W H, Wang W Y, Zhu N H. Stable radiofrequency phase distribution over optical fiber by phase-drift autocancellation. Optics Letters, 2014, 39(15): 4294–4296

    [89] Li W, Sun W H, Wang W T, Wang L X, Liu J G, Zhu N H. Reduction of measurement error of optical vector network analyzer based on DPMZM. IEEE Photonics Technology Letters, 2014, 26 (9): 866–869

    [90] Li W, Zhu N H, Wang L X. Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution. Optics Letters, 2012, 37(2): 166–168

    [91] Venema L. Photonic technologies. Nature, 2003, 424(6950): 809

    [92] Aza a J, Madsen C K, Takiguchi K, Cincontti G. Special issue on “optical signal processing”. IEEE/OSA Journal Ligthwave Technology, 2006, 24(7): 2484–2767

    [93] Ngo N Q, Yu S F, Tjin S C, Kam C H. A new theoretical basis of higher-derivative optical differentiators. Optics Communications, 2004, 230(1-3): 115–129

    [94] Aza a J. Ultrafast analog all-optical signal processors based on fiber-grating devices. IEEE Photonics Journal, 2010, 2(3): 359– 386

    [95] Slavík R, Park Y, Kulishov M, Morandotti R, Aza a J. Ultrafast all-optical differentiators. Optics Express, 2006, 14(22): 10699– 10707

    [96] Park Y, Aza a J, Slavík R. Ultrafast all-optical first- and higherorder differentiators based on interferometers. Optics Letters, 2007, 32(6): 710–712

    [97] Ashrafi R, Li M, Aza a J. Coupling-strength-independent longperiod grating designs for THz-bandwidth optical differentiators. IEEE Photonics Journal, 2013, 5(2): 7100311-1–7100311-12

    [98] Li M, Janner D, Yao J, Pruneri V. Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration. Optics Express, 2009, 17(22): 19798–19807

    [99] Li M, Jeong H S, Aza a J, Ahn T J. 25-terahertz-bandwidth alloptical temporal differentiator. Optics Express, 2012, 20(27): 28273–28280

    [100] Li M, Yao J. Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating. Journal of Lightwave Technology, 2011, 29(17): 2506–2511

    [101] Li M, Shao L, Albert J, Yao J. Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating. IEEE Photonics Technology Letters, 2011, 23(4): 251–253

    [102] Ferrera M, Park Y, Razzari L, Little B E, Chu S T, Morandotti R, Moss D J, Aza a J. On-chip CMOS-compatible all-optical integrator. Nature Communications, 2010, 1(3): 29-1–29-5

    [103] Aza a J. Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator. Optics Letters, 2008, 33(1): 4–6

    [104] Slavík R, Park Y, Ayotte N, Doucet S, Ahn T J, LaRochelle S, Aza a J. Photonic temporal integrator for all-optical computing. Optics Express, 2008, 16(22): 18202–18214

    [105] Malacarne A, Ashrafi R, Li M, LaRochelle S, Yao J, Aza a J. Single-shot photonic time-intensity integration based on a timespectrum convolution system. Optics Letters, 2012, 37(8): 1355– 1357

    [106] Li M, Yao J. Ultrafast all-optical wavelet transform based on temporal pulse shaping incorporating a 2-D array of cascaded linearly chirped fiber Bragg gratings. IEEE Photonics Technology Letters, 2012, 24(15): 1319–1321

    [107] Li M, Yao J. All-optical short-time fourier transform based on a temporal pulse-shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings. IEEE Photonics Technology Letters, 2011, 23(20): 1439–1441

    [108] Li M, Yao J. Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating. IEEE Photonics Technology Letters, 2010, 22(21): 1559–1561

    [109] Li M, Yao J. All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. Optics Letters, 2010, 35(2): 223–225

    [110] Ashrafi R, Li M, LaRochelle S, Aza a J. Superluminal space-totime mapping in grating-assisted co-directional couplers. Optics Express, 2013, 21(5): 6249–6256

    [111] Ashrafi R, Li M, Belhadj N, Dastmalchi M, LaRochelle S, Aza a J. Experimental demonstration of superluminal space-to-time mapping in long period gratings. Optics Letters, 2013, 38(9): 1419– 1421

    [112] Ashrafi R, Li M, Aza a J. Tsymbol/s optical coding based on longperiod gratings. IEEE Photonics Technology Letters, 2013, 25(10): 910–913

    [113] Fernández-Ruiz M R, Li M, Dastmalchi M, Carballar A, LaRochelle S, Aza a J. Picosecond optical signal processing based on transmissive fiber Bragg gratings. Optics Letters, 2013, 38(8): 1247–1249

    [114] Li M, Dumais P, Ashrafi R, Bazargani H P, Quelene J, Callender C, Aza a J. Ultrashort flat-top pulse generation using on-chip CMOScompatible Mach-Zehnder interferometers. IEEE Photonics Technology Letters, 2012, 24(16): 1387–1389

    [115] Li M, Li Z, Yao J. Photonic generation of precisely π phase-shifted binary phase-coded microwave signal. IEEE Photonics Technology Letters, 2012, 24(22): 2001–2004

    [116] Li Z, Li M, Chi H, Zhang X, Yao J. Photonic generation of phasecoded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating. IEEE Microwave and Wireless Components Letters, 2011, 21(12): 694–696

    [117] Li M, Yao J. Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically pumped linearly chirped fiber Bragg grating. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(12): 3531–3537

    [118] Li M, Han Y, Pan S,Yao J. Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system. IEEE Photonics Technology Letters, 2011, 23(11): 715–717

    [119] Li M, Shao L, Albert J, Yao J. Tilted fiber Bragg grating for chirped microwave waveform generation. IEEE Photonics Technology Letters, 2011, 23(5): 314–316

    [120] Li M, Wang C, Li W, Yao J. An unbalanced temporal pulseshaping system for chirped microwave waveform generation. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 2968–2975

    [121] Wang C, Li M, Yao J. Continuously tunable photonic microwave frequency multiplication by use of an unbalanced temporal pulse shaping system. IEEE Photonics Technology Letters, 2010, 22 (17): 1285–1287

    [122] Weiner A M, Heritage J P, Kirschner E M. High-resolution femtosecond pulse shaping. Journal of the Optical Society of America B, 1988, 5(8): 1563–1572

    [123] Lepetit L, Chériaux G, Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. Journal of the Optical Society of America B, 1995, 12(12): 2467–2474

    [124] Liu W, Li M, Guzzon R S, Norberg E J, Parker J S, Lu M, Coldren L A, Yao J. A fully reconfigurable photonic integrated signal processor. Nature Photonics, 2016: 190–195

    [125] Li M, Deng Y, Tang J, Sun S, Yao J, Aza a J, Zhu N. Reconfigurable optical signal processing based on a distributed feedback semiconductor optical amplifier. Scientific Reports, 2016, 6: 19985-1–19985-9

    Ming LI, Ninghua ZHU. Recent advances in microwave photonics[J]. Frontiers of Optoelectronics, 2016, 9(2): 160
    Download Citation