• Acta Photonica Sinica
  • Vol. 47, Issue 5, 516005 (2018)
ZHANG Wen-tao1、2、*, LI Gan1、2, ZHAN Ping-ping1、2, LI Yue-wen1、2, and ZHANG Yu-ting1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20184705.0516005 Cite this Article
    ZHANG Wen-tao, LI Gan, ZHAN Ping-ping, LI Yue-wen, ZHANG Yu-ting. Characterizing the Absorption of Terahertz Wave by Graphene under the Excitation of Different Luminous Power[J]. Acta Photonica Sinica, 2018, 47(5): 516005 Copy Citation Text show less
    References

    [1] HU Xiao-yan. Research progress and trends of terahertz technology from the view of photonics[J]. Laser and Infrared, 2015, 45(7): 740-748.

    [2] LIU Chao, YANG Ming, LIU Zhi-gang. Development and application in near-terahertz power devices[J]. Journal of Microwaves, 2015(s1): 6-9.

    [3] DHILLON S S, VITIELLO M S, LINFIELD E H, et al. The 2017 terahertz science and technology roadmap[J]. Journal of Physics D Applied Physics, 2017, 50(4): 043001.

    [4] YANG Zhen-gang, ZHAO Bi-qiang, LIU Jin-song, et al. Nondestructive inspection with terahertz waves[J]. Physics, 2013, 42(10): 708-711

    [5] KAWASE K, OGAWA Y, WATANABE Y, et al. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints[J]. Optics Express, 2003, 11(20): 2549-2554.

    [6] WALLACE V P, FITZGERALD A J, SHANKAR S, et al. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo[J]. British Journal of Dermatology, 2015, 151(2): 424-432.

    [7] NIE Jun-yang, ZHANG Wen-tao, XIONG Xian-ming, et al. Recognition of transgenic soybeans based on terahertz spectroscopy and PCA-BPN network[J]. Acta Photonica Sinica, 2016, 45(5): 161-167.

    [8] ZHAO Guo-zhong, SHEN Yan-chun, LIU Ying. Application of terahertz technology in military and security field[J]. Journal of Electronic Measurement and Instrumentation, 2015(8): 1097-1101.

    [9] SEEDS A J, SHAMS H, FICE M J, et al. Terahertz photonics for wireless communications[J]. Journal of Lightwave Technology, 2015, 33(3): 579-587.

    [10] HEBLING J, YEH K L, HOFFMANN M C, et al. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities[J]. Journal of the Optical Society of America B, 2015, 25(7): 1266-1277.

    [11] KAN E, REN H, WU F,et al. Why the band gap of graphene is tunable on hexagonal boron nitride[J]. Journal of Physical Chemistry C, 2012, 116(4): 3142-3146.

    [12] RYZHII V, RYZHII M, MITIN V,et al. Terahertz photomixing using plasma resonances in double-graphene layer structures[J]. Journal of Applied Physics, 2013, 113(17): 1308-103.

    [13] RENO J L, KHAANAL S, KUNMAR S. 2.1 THz quantum-cascade laser operating up to 144 K based on a scattering-assisted injection design[J].Optics Express, 2015, 23(15): 19689.

    [14] SU Juan, CHENG Bin-bin, DENG Xian-jin. Recent progress on graphene-based terahertz optoelectronics[J]. Information and Electronic Engineering, 2015, 13(3): 511-519.

    [15] CHEN Ying-liang, FENG Xiao-bo, HOU De-dong. Optical absorptions in monolayer and bilayer graphene[J]. Acta Physica Sinica, 2013, 62(18): 416-421.

    [16] SENSALE-RODRIGUEZ B, YAN R, RAFIQUE S,et al. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators[J]. Nano Letters, 2016, 12(9): 4518-4522.

    [17] AHMADIVAND A, SINHA R, KARABIYIK M,et al. Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators[J]. Journal of Nanoparticle Research, 2017, 19(1): 3.

    [18] ZOU Yi-xuan, DONG Lian-he, XIA Liang-ping,et al. Graphene electrically modulating terahertz transmission enhanced by arm type metal mesh structure[J]. Acta Photonica Sinica, 2018, 47(2): 0223002.

    [19] HABERER D, VVALIKH D V, TAIOLI S, et al. Tunable band gap in hydrogenated quasi-free-standing graphene[J]. Nano Letters, 2015, 10(9): 3360-3366.

    [20] CHEN Tao, LI Zhi, MO Wei.Identification of terahertz absorption spectra of explosives based on fuzzy pattern recognition[J]. Chinese Journal of Scientific Instrument, 2012, 33(11): 2480-2486.

    [21] QI M, REN Z, JIAO Y, et al. Hydrogen kinetics on scalable graphene growth by atmospheric pressure chemical vapor deposition with acetylene[J]. Journal of Physical Chemistry C, 2013, 117(27): 14348–14353.

    [22] DOMEY T D, BARANIUK R G, MITTLEMAN D M. Material parameter estimation with terahertz time-domain spectroscopy[J]. Journal of the Optical Society of America A Optics Image Science and Vision, 2001, 18(7): 1562-71.

    [23] LI T, LUO L, HUOALO M, et al. Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene.[J]. Physical Review Letters, 2012, 108(16): 167401.

    [24] ZHOU Yi-xuan, ZHENG Xin-liang, XU Xin-long, et al. Study on terahertz conductivity of stacked multilayer graphene[J]. China Sciencepaper, 2014(6): 673-676.

    [25] MAENG I, LIM S, CHAE S J, et al. Gate-controlled nonlinear conductivity of dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy[J]. Nano Letters, 2012, 12(2): 551.

    ZHANG Wen-tao, LI Gan, ZHAN Ping-ping, LI Yue-wen, ZHANG Yu-ting. Characterizing the Absorption of Terahertz Wave by Graphene under the Excitation of Different Luminous Power[J]. Acta Photonica Sinica, 2018, 47(5): 516005
    Download Citation