• Frontiers of Optoelectronics
  • Vol. 14, Issue 2, 187 (2021)
Lei WAN1,2,3,4,*, Danping PAN1, Tianhua FENG1,3, Weiping LIU1,4, and Alexander A. POTAPOV3,5
Author Affiliations
  • 1Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
  • 2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3JNU-IREE RAS Joint Laboratory of Information Techniques and Fractal Signal Processing, Jinan University, Guangzhou 510632, China
  • 4Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
  • 5Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia
  • show less
    DOI: 10.1007/s12200-021-1124-5 Cite this Article
    Lei WAN, Danping PAN, Tianhua FENG, Weiping LIU, Alexander A. POTAPOV. A review of dielectric optical metasurfaces for spatial differentiation and edge detection[J]. Frontiers of Optoelectronics, 2021, 14(2): 187 Copy Citation Text show less
    References

    [1] Gudmundsson M, El-Kwae E A, Kabuka M R. Edge detection in medical images using a genetic algorithm. IEEE Transactions on Medical Imaging, 1998, 17(3): 469–474

    [2] Chen J, Li J, Pan D, Zhu Q, Mao Z. Edge-guided multiscale segmentation of satellite multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4513–4520

    [3] Hoang T M, Nam S H, Park K R. Enhanced detection and recognition of road markings based on adaptive region of interest and deep learning. IEEE Access: Practical Innovations, Open Solutions, 2019, 7: 109817–109832

    [4] Solli D R, Jalali B. Analog optical computing. Nature Photonics, 2015, 9(11): 704–706

    [5] Goodman J W. Introduction to Fourier Optics. Englewood: Roberts & Company Publishers, 2005

    [6] Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Science, 2014, 343(6167): 160–163

    [7] Pendry J B, Holden A J, Robbins D J, Stewart JW. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084

    [8] Smith D R, Vier D C, Koschny T, Soukoulis C M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 2005, 71(3): 036617

    [9] hang C, Divitt S, Fan Q, Zhu W, Agrawal A, Lu Y, Xu T, Lezec H J. Low-loss metasurface optics down to the deep ultraviolet region. Light, Science & Applications, 2020, 9(1): 55

    [10] Divitt S, Zhu W, Zhang C, Lezec H J, Agrawal A. Ultrafast optical pulse shaping using dielectric metasurfaces. Science, 2019, 364 (6443): 890–894

    [11] Zhang C, Pfeiffer C, Jang T, Ray V, Junda M, Uprety P, Podraza N, Grbic A, Guo L J. Breaking Malus’ law: highly efficient, broadband, and angular robust asymmetric light transmitting metasurface. Laser & Photonics Reviews, 2016, 10(5): 791–798

    [12] Yu N, Capasso F. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150

    [13] Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces. Small Methods, 2017, 1(4): 1600064

    [14] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces. Science, 2013, 339(6125): 1232009

    [15] Kamali S M, Arbabi E, Arbabi A, Faraon A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 2018, 7(6): 1041–1068

    [16] Zhang L, Mei S, Huang K, Qiu C W. Advances in full control of electromagnetic waves with metasurfaces. Advanced Optical Materials, 2016, 4(6): 818–833

    [17] Luo X G. Subwavelength optical engineering with metasurface waves. Advanced Optical Materials, 2018, 6(7): 1701201

    [18] Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937–943

    [19] Lin D, Fan P, Hasman E, Brongersma M L. Dielectric gradient metasurface optical elements. Science, 2014, 345(6194): 298–302

    [20] Khorasaninejad M, ChenWT, Devlin R C, Oh J, Zhu A Y, Capasso F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190–1194

    [21] Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology, 2018, 13(3): 220– 226

    [22] Deng Y, Wang X, Gong Z, Dong K, Lou S, Pégard N, Tom K B, Yang F, You Z, Waller L, Yao J. All-silicon broadband ultraviolet metasurfaces. Advanced Materials, 2018, 30(38): 1802632

    [23] Henstridge M, Pfeiffer C, Wang D, Boltasseva A, Shalaev V M, Grbic A, Merlin R. Accelerating light with metasurfaces. Optica, 2018, 5(6): 678–681

    [24] Wang L, Kruk S, Tang H, Li T, Kravchenko I, Neshev D N, Kivshar Y S. Grayscale transparent metasurface holograms. Optica, 2016, 3(12): 1504–1505

    [25] Wang B, Dong F, Yang D, Song Z, Xu L, Chu W, Gong Q, Li Y. Polarization-controlled color-tunable holograms with dielectric metasurfaces. Optica, 2017, 4(11): 1368–1371

    [26] Huang L, Zhang S, Zentgraf T. Metasurface holography: from fundamentals to applications. Nanophotonics, 2018, 7(6): 1169– 1190

    [27] Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Physical Review Letters, 2017, 118(11): 113901

    [28] Wang K, Titchener J G, Kruk S S, Xu L, Chung H P, Parry M, Kravchenko I I, Chen Y H, Solntsev A S, Kivshar Y S, Neshev D N, Sukhorukov A A. Quantum metasurface for multiphoton interference and state reconstruction. Science, 2018, 361(6407): 1104– 1108

    [29] Phan T, Sell D, Wang E W, Doshay S, Edee K, Yang J, Fan J A. High-efficiency, large-area, topology-optimized metasurfaces. Light, Science & Applications, 2019, 8(1): 48

    [30] Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I, Pertsch T, Kivshar Y S. High-efficiency dielectric Huygens’ surfaces. Advanced Optical Materials, 2015, 3(6): 813–820

    [31] Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Physical Review Letters, 2013, 110(19): 197401

    [32] Kamali S M, Arbabi E, Arbabi A, Horie Y, Faraji-Dana M, Faraon A. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Physical Review X, 2017, 7(4): 041056

    [33] Pors A, Nielsen M G, Bozhevolnyi S I. Analog computing using reflective plasmonic metasurfaces. Nano Letters, 2015, 15(1): 791– 797

    [34] Chen H, An D, Li Z, Zhao X. Performing differential operation with a silver dendritic metasurface at visible wavelengths. Optics Express, 2017, 25(22): 26417–26426

    [35] Wu W, Jiang W, Yang J, Gong S, Ma Y. Multilayered analog optical differentiating device: performance analysis on structural parameters. Optics Letters, 2017, 42(24): 5270–5273

    [36] Kwon H, Sounas D, Cordaro A, Polman A, Alù A. Nonlocal metasurfaces for optical signal processing. Physical Review Letters, 2018, 121(17): 173004

    [37] Zhang W, Qu C, Zhang X. Solving constant-coefficient differential equations with dielectric metamaterials. Journal of Optics, 2016, 18(7): 075102

    [38] Abdollahramezani S, Chizari A, Dorche A E, Jamali M V, Salehi J A. Dielectric metasurfaces solve differential and integro-differential equations. Optics Letters, 2017, 42(7): 1197–1200

    [39] Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z, Fan S. Plasmonic computing of spatial differentiation. Nature Communications, 2017, 8(1): 15391

    [40] Zhou J, Liu X, Fu G, Liu G, Tang P, Yuan W, Zhan X, Liu Z. Highperformance plasmonic oblique sensors for the detection of ions. Nanotechnology, 2020, 31(28): 285501

    [41] Shi L, Shang J, Liu Z, Li Y, Fu G, Liu X, Pan P, Luo H, Liu G. Ultra-narrow multi-band polarization-insensitive plasmonic perfect absorber for sensing. Nanotechnology, 2020, 31(46): 465501

    [42] Liu Z, Liu G, Fu G, Liu X, Huang Z, Gu G. All-metal meta-surfaces for narrowband light absorption and high performance sensing. Journal of Physics D, Applied Physics, 2016, 49(44): 445104

    [43] Liu Z, Fu G, Liu X, Liu Y, Tang L, Liu Z, Liu G. High-quality multispectral bio-sensing with asymmetric all-dielectric metamaterials. Journal of Physics D, Applied Physics, 2017, 50(16): 165106

    [44] Liu Z, Liu G, Liu X, Huang S,Wang Y, Pan P, Liu M. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology, 2015, 26(23): 235702

    [45] Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S, Liu Z. Optical edge detection based on high-efficiency dielectric metasurface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23): 11137–11140

    [46] Zhou Y, Wu W, Chen R, Chen W, Chen R, Ma Y. Analog optical spatial differentiators based on dielectric metasurfaces. Advanced Optical Materials, 2020, 8(4): 1901523

    [47] Zhou Y, Zheng H, Kravchenko I I, Valentine J. Flat optics for image differentiation. Nature Photonics, 2020, 14(5): 316–323

    [48] Wan L, Pan D, Yang S, Zhang W, Potapov A A,Wu X, Liu W, Feng T, Li Z. Optical analog computing of spatial differentiation and edge detection with dielectric metasurfaces. Optics Letters, 2020, 45(7): 2070–2073

    [49] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011, 5(9): 523–530

    [50] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337

    [51] Farmahini-Farahani M, Cheng J, Mosallaei H. Metasurfaces nanoantennas for light processing. Journal of the Optical Society of America B, Optical Physics, 2013, 30(9): 2365–2370

    [52] Chizari A, Abdollahramezani S, Jamali M V, Salehi J A. Analog optical computing based on a dielectric meta-reflect array. Optics Letters, 2016, 41(15): 3451–3454

    [53] Guo C, Xiao M, Minkov M, Shi Y, Fan S. Photonic crystal slab Laplace operator for image differentiation. Optica, 2018, 5(3): 251– 256

    [54] Fan S, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs. Physical Review B, 2002, 65(23): 235112

    [55] Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S. Fano resonances in photonics. Nature Photonics, 2017, 11(9): 543–554

    [56] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk’yanchuk B. Optically resonant dielectric nanostructures. Science, 2016, 354(6314): aag2472

    [57] He S, Zhou J, Chen S, Shu W, Luo H, Wen S. Wavelengthindependent optical fully differential operation based on the spinorbit interaction of light. APL Photonics, 2020, 5(3): 036105

    [58] Guo C, Xiao M, Minkov M, Shi Y, Fan S. Isotropic wavevector domain image filters by a photonic crystal slab device. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2018, 35(10): 1685–1691

    [59] Saba A, Tavakol M R, Karimi-Khoozani P, Khavasi A. Twodimensional edge detection by guided mode resonant metasurface. IEEE Photonics Technology Letters, 2018, 30(9): 853–856

    [60] Cordaro A, Kwon H, Sounas D, Koenderink A F, Alù A, Polman A. High-index dielectric matesurfaces performing mathematical operations. Nano Letters, 2019, 19(12): 8418–8423

    [61] Abdollahramezani S, Hemmatyar O, Adibi A. Meta-optics for spatial optical analog computing. Nanophotonics, 2020, 9(13): 4075–4095

    [62] Kwon H, Cordaro A, Sounas D, Polman A, Alù A. Dualpolarization analog 2D image processing with nonlocal metasurfaces. ACS Photonics, 2020, 7(7): 1799–1805

    [63] Roberts A, Gómez D E, Davis T J. Optical image processing with metasurface dark modes. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2018, 35(9): 1575–1584

    [64] Davis T J, Eftekhari F, Gómez D E, Roberts A. Metasurfaces with asymmetric optical transfer functions for optical signal processing. Physical Review Letters, 2019, 123(1): 013901

    [65] Zhu T, Lou Y, Zhou Y, Zhang J, Huang J, Li Y, Luo H,Wen S, Zhu S, Gong Q, Qiu M, Ruan Z. Generalized spatial differentiation from the spin hall effect of light and its application in image processing of edge detection. Physical Review Applied, 2019, 11(3): 034043

    [66] He S, Zhou J, Chen S, Shu W, Luo H, Wen S. Spatial differential operation and edge detection based on the geometric spin Hall effect of light. Optics Letters, 2020, 45(4): 877–880

    [67] Wang H, Guo C, Zhao Z, Fan S. Compact incoherent image differentiation with nanophotonic structures. ACS Photonics, 2020, 7(2): 338–343

    [68] Zhou J, Qian H, Zhao J, Tang M,Wu Q, Lei M, Luo H,Wen S, Chen S, Liu Z. Two-dimensional optical spatial differentiation and highcontrast imaging. National Science Review, 2020, doi:10.1093/nsr/ nwaa176

    [69] Karimi P, Khavasi A, Mousavi Khaleghi S S. Fundamental limit for gain and resolution in anglog optical edge detection. Optics Express, 2020, 28(2): 898–911

    [70] Huo P, Zhang C, Zhu W, Liu M, Zhang S, Zhang S, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Letters, 2020, 20(4): 2791–2798

    [71] Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, Li L, Wang S, Wang Z, Zhu S. Imaging based on metalens. PhotoniX, 2020, 1(2): 4540 === Lei Wan is an Associate Research Fellow in College of Information Science and Technology at Jinan University, China. He received the Ph.D. degree in microelectronics from South China Normal University, China in 2017. From 2015 to 2017, he was a visiting Ph.D. student with Department of Electrical Engineering and Computer Science, University of Michigan, USA. His research interests include nanoimprinting, nanophotonic devices, and acousto-optic interaction devices.

    Lei WAN, Danping PAN, Tianhua FENG, Weiping LIU, Alexander A. POTAPOV. A review of dielectric optical metasurfaces for spatial differentiation and edge detection[J]. Frontiers of Optoelectronics, 2021, 14(2): 187
    Download Citation