• Chinese Optics Letters
  • Vol. 22, Issue 9, 092201 (2024)
Tingan Li1, Chenglin Shang1, Xuanhao Wang1, Weiqiang Lü2..., Zhiyao Zhang2, Cheng Zeng1,*, Yong Liu2 and Jinsong Xia1,**|Show fewer author(s)
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
  • show less
    DOI: 10.3788/COL202422.092201 Cite this Article Set citation alerts
    Tingan Li, Chenglin Shang, Xuanhao Wang, Weiqiang Lü, Zhiyao Zhang, Cheng Zeng, Yong Liu, Jinsong Xia, "Low-loss and broadband complementary dual-output electro-optic modulator based on thin-film lithium niobate," Chin. Opt. Lett. 22, 092201 (2024) Copy Citation Text show less
    References

    [1] A. Ng’oma. Radio-Over-Fibre Technology for Broadband Wireless Communication Systems(2005).

    [2] J. Mena, K. Bandura, Q. Y. Tang et al. A radio-frequency-over-fiber link for large-array radio astronomy applications. J. Instrum., 8, T10003(2013).

    [3] S. Chin, L. Thévenaz, D. Dolfi et al. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers. Opt. Express, 18, 22599(2010).

    [4] J. Davila-Rodriguez, F. N. Baynes, F. Quinlan et al. Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation. Opt. Lett., 42, 1277(2017).

    [5] S. Molin, G. Baili, J.-P. Huignard et al. Experimental investigation of relative intensity noise in Brillouin fiber ring lasers for microwave photonics applications. Opt. Lett., 33, 1681(2008).

    [6] H. Wen, H. Zheng, G. Li et al. Few-mode fibre-optic microwave photonic links. Light Sci. Appl., 6, e17021(2017).

    [7] R. A. Minasian. Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Techn., 54, 832(2006).

    [8] C. G. Bottenfield, V. A. Thomas, S. E. Ralph et al. Silicon photonic modulator linearity and optimization for microwave photonic links. IEEE J. Sel. Top. Quantum Electron., 25, 3400110(2019).

    [9] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80(2019).

    [10] Y. Cui, K. Xu, Y. Dai. Suppression of second-order harmonic distortion in ROF links utilizing dual-output MZM and balanced detection. IEEE International Topical Meeting on Microwave Photonics(2012).

    [11] D. Renaud, D. R. Assumpcao, G. Joe et al. Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat. Commun., 14, 1496(2023).

    [12] C. Wang, M. Zhang, X. Chen et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [13] A. N. R. Ahmed, S. Nelan, D. W. Prather. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform. Opt. Lett., 45, 1112(2020).

    [14] Y. Liu, H. Li, W. Guo et al. “Low Vπ thin-film lithium niobate modulator fabricated with photolithography. Opt. Express, 29, 6320(2021).

    [15] B. Buscaino, M. Zhang, C. Wang et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373(2019).

    [16] M. He, M. Xu, X. Cai et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit/s and beyond. Nat. Photonics, 13, 359(2019).

    [17] A. J. Mercante, S. Shi, D. W. Prather. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express, 26, 14810(2018).

    [18] F. Valdez, V. Mere, S. Mookherjea et al. 110 GHz, 110 mW hybrid silicon-lithium niobate Mach‑Zehnder modulator. Sci. Rep., 12, 18611(2022).

    [19] F. Valdez, V. Mere, X. Wang et al. Integrated O- and C-band silicon-lithium niobate Mach-Zehnder modulators with 100 GHz bandwidth, low voltage, and low loss. Opt. Express, 31, 5273(2023).

    [20] V. Mere, F. Valdez, S. Mookherjea. Design and fabrication of hybrid lithium niobate electro-optic modulators. IEEE International Conference on Emerging Electronics (ICEE)(2022).

    [21] M. Zhang, C. Wang, M. Loncar et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536(2017).

    [22] B. Desiatov, A. Shams-Ansari, M. Zhang et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica, 6, 380(2019).

    [23] A. Shams-Ansari, G. Huang, L. He et al. Reduced material loss in thin-film lithium niobate waveguides. APL Photonics, 7, 081301(2022).

    [24] C. Reimer, R. Cheng, M. Yu et al. Integrated electro-optic isolator on thin-film lithium niobate. Nat. Photonics, 17, 666(2023).

    [25] G. Chen, K. Chen, L. Liu. High performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrode. APL Photonics, 7, 026103(2022).

    [26] M. Zhang, C. Wang, M. Lončar et al. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica, 8, 652(2021).

    [27] S. Nelan, A. Mercante, C. Hurley et al. Compact thin film lithium niobate folded intensity modulator using a waveguide crossing. Opt. Express, 30, 9193(2022).

    [28] S. J. Spector, M. W. Geis, G. R. Zhou et al. CMOS-compatible dual-output silicon modulator for analog signal processing. Opt. Express, 16, 11027(2008).

    [29] Y. C. Manie, R.-K. Shiu, P.-C. Peng et al. Dual-output Mach–Zehnder modulator for optical access networks. Fiber Integrated Opt., 37, 256(2018).

    [30] S. P. Nelan, A. Mercante, S. Shi et al. Ultra-high extinction dual-output thin-film lithium niobate intensity modulator. IEEE Access, 10, 100300(2022).

    [31] L.-W. Chung, S.-L. Lee, Y.-J. Lin. Principles and application of reduced beat length in MMI couplers. Opt. Express, 14, 8753(2006).

    [32] C. Hu, A. Pan, J. Xia et al. High-efficient coupler for thin-film lithium niobate waveguide devices. Opt. Express, 29, 5397(2021).

    [33] T. Li, C. Zeng, J. S. Xia. QAM signal with electric field sensor based on thin-film lithium niobate. Chin. Opt. Lett., 21, 120041(2023).

    Tingan Li, Chenglin Shang, Xuanhao Wang, Weiqiang Lü, Zhiyao Zhang, Cheng Zeng, Yong Liu, Jinsong Xia, "Low-loss and broadband complementary dual-output electro-optic modulator based on thin-film lithium niobate," Chin. Opt. Lett. 22, 092201 (2024)
    Download Citation