• Optics and Precision Engineering
  • Vol. 28, Issue 7, 1609 (2020)
ZHU Fu-quan1,2,*, WANG Hua-jun1, YANG Li-ping3, and LI Chang-guo4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.37188/ope.20202807.1609 Cite this Article
    ZHU Fu-quan, WANG Hua-jun, YANG Li-ping, LI Chang-guo. Hyperspectral image lossless compressionusing adaptive bands selection and optimal prediction sequence[J]. Optics and Precision Engineering, 2020, 28(7): 1609 Copy Citation Text show less
    References

    [1] YAN J W, CHEN H D, LIU L. Overview of hyperspectral image classification [J]. Opt. Precision Eng., 2019, 27(3): 680-693. (in Chinese)

    [2] WANG H Y, YANG M Y, WANG H, et al..A fast hyperspectral target detection fused on spectral derivative and recomposition and SAM [J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(8): 793-802. (in Chinese)

    [3] ZHANG CH M, MU T K, YAN T Y, et al.. Overview of hyperspectral remote sensing Technology [J]. Spacecraft Recovery & Remote Sensing, 2018, 39(3): 104-114. (in Chinese)

    [4] FU W, LI SH T, FANG L Y, et al.. Adaptive spectral-spatial compression of hyperspectral image with sparse representation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 671-682.

    [5] GUERRA R, BARRIOS Y, DIAZ M, et al.. A new algorithm for the on-board compression of hyperspectral images [J]. Remote Sensing, 2018, 10, 428.

    [6] BASCONES D, GONZALEZ C, MOZOS D. Hyperspectral image compression using vector quantization, PCA and JPEG2000 [J]. Remote Sensing, 2018, 10(6), 907.

    [7] CHEN SH X, ZHANG Y Q. Hyperspectral image compression based on adaptive band clustering principal component analysis and back propagation neural network [J]. Journal of Electronics & Information Technology, 2018, 40(10): 2478-2483. (in Chinese)

    [8] CHEN H, HUANG B, ZHANG Y. Adaptive quantized PCA with 3D prediction and positive packing for lossless compression of ultraspectral sounder data [J]. International Journal of Remote Sensing, 2015, 36(6): 1689-1704.

    [9] HUANG B, AHUJA A, HUANG H L. Fast precomputed VQ with optimal bit allocation for lossless compression of ultraspectral sounder data[C]. Data Compression Conference, Snowbird, UT, USA, 2005: 29-31.

    [10] MAGLI E, OLMO G, QUACCHIO E. Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC [J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(1): 21-25.

    [11] WEINBERGER M, SEROUSSI G, SAPIRO G. The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS [J]. IEEE Transacions on Image Processing, 2000, 9(8): 1309-1324.

    [12] AIAZZI B, BARONTI S, ALPARONE L. Lossless compression of hyperspectral images using multiband lookup tables [J]. IEEE Signal Processing Letters, 2009, 16(6): 481-484.

    [13] MIELIKAINEN J, HUANG B. Lossless compression of hyperspectral images using clustered linear prediction with adaptive prediction length [J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1118-1121.

    [14] GAO F, LIU Y, GUO SH X. Lossless compression of hyperspectral images using backward search and context window [J].Opt. Precision Eng., 2015, 23(8): 2376-2383. (in Chinese)

    [15] KLIMESH M. Low-complexity lossless compression of hyperspectral imagery via adaptive filtering [J]. IPN Progress Report, 2005, 42(163): 1-10.

    [16] BASCONES D, GONZALEZ C, MOZOS D. FPGA implementation of the CCSDS 1.2.3 standard for real-time hyperspectral lossless compression [J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(4): 1158-1165.

    [17] LIN CH CH, HWANG Y TS. An efcient lossless compression scheme for hyperspectral images using two-stage prediction [J]. IEEE Transactions on Geoscience & Remote Sensing Letters, 2010, 7(3): 558-562.

    [18] LI CH G and GUO K. Lossless compression of hyperspectral images using three-stage prediction based on adaptive predictor reordering [J].Opt. Precision Eng., 2014, 22(3): 760-769. (in Chinese)

    [19] SONG J W, ZHANG ZH W, CHEN X M. Lossless compression of hyperspectral imagery via RLS filter [J].Electronics Letters, 2013, 49(16): 992-993.

    [20] SONG J W, ZHOU L, DENG CH, et al.. Lossless compression of hyperspectral imagery using a fast adaptive length prediction RLS filter [J]. Remote Sensing Letters, 2019, 10(4): 401-410.

    [21] GAO F, GUO SH X. Lossless compression of hyperspectral images using conventional recursive least squares predictor with adaptive prediction bands [J]. Journal of Applied Remote Sensing, 2016, 10 (1): 1-9.

    [22] GAO F, SUN CH J, SHAO Q L, et al.. Lossless compression of hyperspectral images using K-means Clustering and conventional recursive least-squares predictor [J]. Journal of Electronics & Information Technology, 2016, 38(11): 2709-2714. (in Chinese)

    [23] KARACAA C, GULLU M K. Lossless hyperspectral image compression using bimodal conventional recursive least-squares [J]. Remote Sensing Letters, 2018, 9(1): 31-40.

    ZHU Fu-quan, WANG Hua-jun, YANG Li-ping, LI Chang-guo. Hyperspectral image lossless compressionusing adaptive bands selection and optimal prediction sequence[J]. Optics and Precision Engineering, 2020, 28(7): 1609
    Download Citation