• High Power Laser and Particle Beams
  • Vol. 34, Issue 5, 056006 (2022)
Xu Wang, Ya’nan Zhao*, Pengcheng Zhao, and Tao Yu
Author Affiliations
  • School of Nuclear Science and Technology, University of South China, Hengyang 421200, China
  • show less
    DOI: 10.11884/HPLPB202234.210474 Cite this Article
    Xu Wang, Ya’nan Zhao, Pengcheng Zhao, Tao Yu. Asymmetrical operation characteristics of natural circulation lead-bismuth reactor under ocean conditions[J]. High Power Laser and Particle Beams, 2022, 34(5): 056006 Copy Citation Text show less
    Schematic diagram of TALL-3D experimental device (a) and node diagram (b)
    Fig. 1. Schematic diagram of TALL-3D experimental device (a) and node diagram (b)
    Rolling flow comparison
    Fig. 2. Rolling flow comparison
    Heaving flow comparison
    Fig. 3. Heaving flow comparison
    SNCLFR-10 reactor structure sketch (a) and node diagram (b)
    Fig. 4. SNCLFR-10 reactor structure sketch (a) and node diagram (b)
    Natural circulation flow
    Fig. 5. Natural circulation flow
    Temperature of the core
    Fig. 6. Temperature of the core
    Natural circulation flow under inclined condition
    Fig. 7. Natural circulation flow under inclined condition
    Effect of inclined angle on core parameters
    Fig. 8. Effect of inclined angle on core parameters
    Variation of core outlet temperature (a) and flow (b)
    Fig. 9. Variation of core outlet temperature (a) and flow (b)
    Effect of inclination angle on core flow (a) and outlet temperature(b)
    Fig. 10. Effect of inclination angle on core flow (a) and outlet temperature(b)
    Natural circulation flow under heaving condition
    Fig. 11. Natural circulation flow under heaving condition
    Effect of heaving period (a) and amplitude(b) on flow
    Fig. 12. Effect of heaving period (a) and amplitude(b) on flow
    Variation of core temperature (a) and natural circulation flow (b)
    Fig. 13. Variation of core temperature (a) and natural circulation flow (b)
    Effect of heaving period (a) and amplitude(b) on flow
    Fig. 14. Effect of heaving period (a) and amplitude(b) on flow
    Natural circulation flow under rolling condition
    Fig. 15. Natural circulation flow under rolling condition
    Effect of rolling amplitude (a) and period (b) on flow
    Fig. 16. Effect of rolling amplitude (a) and period (b) on flow
    Variation of core temperature (a) and natural circulation flow (b)
    Fig. 17. Variation of core temperature (a) and natural circulation flow (b)
    Effect of rolling amplitude (a) and period (b) on flow
    Fig. 18. Effect of rolling amplitude (a) and period (b) on flow
    Effect of rolling period (a) and amplitude (b) on core outlet temperature
    Fig. 19. Effect of rolling period (a) and amplitude (b) on core outlet temperature
    parameterthermodynamic properties
    density${\rho _{{\rm{LBE}}} }[{\rm{kg}} \cdot {{\rm{m}}^{ - 3} }] = 11\;096.0 - 1.303\;6 \times {T_{{\rm{LBE}}} }$
    saturation vapor pressure${p_s}_{({\rm{LBE}})}[{\rm{Pa}}] = 1.11 \times {10^{10}} \cdot \exp \Bigg( - \dfrac{{22\;552.0}}{{{T_{{\rm{LBE}}}}}}\Bigg)$
    heat capacity${c_p}_{({\rm{LBE}})}[{\rm{J}} \cdot {\rm{k}}{{\rm{g}}^{ - 1}} \cdot {{\rm{K}}^{ - 1}}] = 159.0 - 2.72 \times {10^{ - 2}} \times {T_{{\rm{LBE}}}} + 7.12 \times {10^{ - 6}} \times T_{{\rm{LBE}}}^2$
    internal energy${U_{({\rm{LBE}})}}[{\rm{J}} \cdot {\rm{k}}{{\rm{g}}^{ - 1}}] = 159.0({T_{{\rm{LBE}}}} - {T_{\rm{M}}}) + \dfrac{{2.72 \times {{10}^{ - 2}}({T^2}_{{\rm{LBE}}} - {T^2}_{\rm{M}})}}{2} + \dfrac{{7.12 \times {{10}^{ - 6}}({T^3}_{{\rm{LBE}}} - {T^3}_{\rm{M}})}}{3}$${T_{\rm{M}}} = 398.15K$
    enthalpy${h_{({\rm{LBE}})}}[{\rm{J}} \cdot {\rm{k}}{{\rm{g}}^{ - 1}}] = U + pv$
    entropy${{{S}}_{({\rm{LBE}})}}[{\rm{J}} \cdot {\rm{k}}{{\rm{g}}^{ - 1}} \cdot {{\rm{K}}^{ - 1}}] = 159.0\ln \dfrac{{{T_{{\rm{LBE}}}}}}{{{T_{\rm{M}}}}} + 2.72 \times {10^{ - 2}}({T_{{\rm{LBE}}}} - {T_{\rm{M}}}) + \dfrac{{7.12 \times {{10}^{ - 6}}({T^2}_{{\rm{LBE}}} - {T^2}_{\rm{M}})}}{2}$
    thermal coefficient of expansion${\beta _{({\rm{LBE}})}}[{{\rm{K}}^{ - 1}}] = \dfrac{1}{{(8\;383.2 - {T_{{\rm{LBE}}}})}}$
    pressure coefficient of expansion${\kappa _{({\rm{LBE}})}}[{\rm{P}}{{\rm{a}}^{ - 1}}] = \dfrac{1}{{(11\;096.0 - 1.303\;6{T_{{\rm{LBE}}}}){{(1\;773.0 + 0.104\;9{T_{{\rm{LBE}}}} + 2.87 \cdot {{10}^{ - 4}}T_{{\rm{LBE}}}^{ - 4})}^2}}}$
    viscosity${\eta _{({\rm{LBE}})}}[{\rm{Pa}} \cdot {\rm{s}}] = 4.94 \times {10^{ - 4}} \times \exp \left( {\dfrac{{754.1}}{{{T_{{\rm{LBE}}}}}}} \right)$
    surface tension${\sigma _{({\rm{LBE}})}}[{\rm{N}} \cdot {{\rm{m}}^{ - 1}}] = 0.367 - 5.5 \cdot {10^{ - 5}}\left( {{T_{{\rm{LBE}}}} - 1\;073.15} \right)$
    thermal conductivity${\lambda _{({\rm{LBE}})}}[{\rm{W}} \cdot {{\rm{m}}^{ - 1}} \cdot {{\rm{K}}^{ - 1}}] = 3.61 + 1.517 \times {10^{ - 2}}{T_{{\rm{LBE}}}} - 1.741 \times {10^{ - 6}}T_{{\rm{LBE}}}^2$
    Table 1. Formula of RELAP5 program for liquid LBE
    parameterMH flow/(kg/s)TS flow/(kg/s)total flow/(kg/s)MH inlet temperature/KMH outlet temperature/KTS inlet temperature/KTS outlet temperature/K
    experiment0.2380.2930.533473.28556.63457.53567.14
    extension0.2420.290.533473.19559.99473.19565.44
    error/%−1.681.02300.019−0.6030.4920.300
    RELAP5-3D0.2380.2960.534473.2561.23473.2561.75
    error/%0−1.023−0.1870.017−0.8260.4900.950
    Table 2. Comparison of experimental value and calculated value of natural circulation
    parameterpower/MWinlet temperature/Koutlet temperature/Kflow/(kg/s)flow rate(m/s)
    design value10533663529.40.12356
    extension10533.52659.63529.280.12133
    error/%0−0.0980.5080.0221.804
    RELAP5-3D10533.34659.1529.840.12123
    error/%0−0.0640.588−0.0831.886
    Table 3. Comparison of design values and calculated values of key parameters in core
    Xu Wang, Ya’nan Zhao, Pengcheng Zhao, Tao Yu. Asymmetrical operation characteristics of natural circulation lead-bismuth reactor under ocean conditions[J]. High Power Laser and Particle Beams, 2022, 34(5): 056006
    Download Citation