• Acta Photonica Sinica
  • Vol. 46, Issue 8, 816004 (2017)
FAN Tian-xin1、*, ZHANG Hui-fang1, LI Yong1, HE Ying1, WANG Yang1, and SUN Xue-mei2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20174608.0816004 Cite this Article
    FAN Tian-xin, ZHANG Hui-fang, LI Yong, HE Ying, WANG Yang, SUN Xue-mei. Tunable Double Plasmon-Induced Transparency Windowsin Metamaterial Formed by Symmetric Graphene and Split Ring Resonators Structure[J]. Acta Photonica Sinica, 2017, 46(8): 816004 Copy Citation Text show less
    References

    [1] HARRIS S E. Electromagnetically induced transparency[J]. Physics Today, 1997, 50(7): 36-42.

    [2] BOLLER K J, IMAMOGLU A, HARRIS S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 1991, 66(20): 2593.

    [3] ZHANG Shuang. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008, 101(4): 047401.

    [4] JING Hui-hui. Plasmon-induced transparency in terahertz metamaterials[J]. Science China Information Sciences, 2013, 56(12): 1-18.

    [5] FU Guang-lai. Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips[J]. Plasmonics, 2016, 11(6): 1597-1602.

    [6] HARRIS S E, HAU L V. Nonlinear optics at low light levels[J]. Physical Review Letters, 1999, 82(23): 4611.

    [7] KRAUSS T F. Why do we need slow light [J]. Nature Photonics, 2008, 2(8): 448-450.

    [8] MONAT C, DE STERKE M, EGGLETON B J. Slow light enhanced nonlinear optics in periodic structures[J]. Journal of Optics, 2010, 12(10): 104003.

    [9] BOYD R W. Material slow light and structural slow light: similarities and differences for nonlinear optics[J]. Journal of the Optical Society of America B, 2011, 28(12): A38-A44.

    [10] PHILLIPS D F, FLEISCHHAUER A, MAIR A, et al. Storage of light in atomic vapor[J]. Physical Review Letters, 2001, 86(5): 783.

    [11] LIU C, DUTTON Z, BEHROOZI C H, et al. Observation of coherent optical information storage in an atomic medium using halted light pulses[J]. Nature, 2001, 409(6819): 490-493.

    [12] FLEISCHHAUER M, IMAMOGLU A, MARANGOS J P. Electromagnetically induced transparency: Optics in coherent media[J]. Reviews of Modern Physics, 2005, 77(2): 633.

    [13] LI Xiao-li, MENG Xu-dong, WU Yan-hua, et al. The Transformation from electromagnetically induced transpareency to lasing without population inversion based on spontaneously generated coherence[J]. Acta Photonica Sinica, 2014, 43(8): 0819002.

    [14] CHIAM S Y, SINGH R, ROCKSTUHL C, et al. Analogue of electromagnetically induced transparency in a terahertz metamaterial[J]. Physical Review B, 2009, 80(15): 153103.

    [15] SINGH R, ROCKSTUHL C, LEDERER F, et al. Coupling between a dark and a bright eigenmode in a terahertz metamaterial[J]. Physical Review B, 2009, 79(8): 085111.

    [16] LIU Xiao-jun. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode[J]. Applied Physics Letters, 2012, 100(13): 131101.

    [17] TAUBERT R, HENTSCHEL M, et al. Classical analog of electromagnetically induced absorption in plasmonics[J]. Nano Letters, 2012, 12(3): 1367-1371.

    [18] DONG Zheng-gao. Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars[J]. Optics Express, 2010, 18(17): 18229-18234.

    [19] ZHANG Jing-jing. Electromagnetically induced transparency in metamaterials at near-infrared frequency[J]. Optics Express, 2010, 18(16): 17187-17192.

    [20] LIU Na. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nature Materials, 2009, 8(9): 758-762.

    [21] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

    [22] ROUHI N, CAPDEVILA S, JAIN D, et al. Terahertz graphene optics[J]. Nano Research, 2012, 5(10): 667-678.

    [23] VAKIL A, ENGHETA N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291-1294.

    [24] JU Long. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature nanotechnology, 2011, 6(10): 630-634.

    [25] KOPPENS F H L, CHANG D E, et al. Graphene plasmonics: a platform for strong light-matter interactions[J]. Nano Letters, 2011, 11(8): 3370-3377.

    [26] ZHU Jun, QIN Liu-li, FU De-li, SONG Hu-xiang. Design of folds graphene waveguide excited surface plasmon polaritons[J]. Acta Photonica Sinica, 2016, 45(2): 0224003

    [27] ZHAO Xiao-lei. Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators[J]. IEEE Photonics Technology Letters, 2015, 27(12): 1321-1324.

    [28] BA Nuo, WANG Lei, WU Xiang-yao, et al. Tunable photonic bandgap based on electromagnetically induced transparency in one dimensional atomic lattices[J]. Acta Photonica Sinica, 2015, 44(6): 0627002

    [29] YIN Xiao-gang. Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules[J]. Applied Physics Letters, 2013, 103(2): 021115.

    [30] HARRIS S E, YAMAMOTO Y. Photon switching by quantum interference[J]. Physical Review Letters, 1998, 81(17): 3611.

    [31] LUKIN M D, YELIN S F, FLEISCHHAUERM, et al. Quantum interference effects induced by interacting dark resonances[J]. Physical Review A, 1999, 60(4): 3225.

    [32] XU H, LU Y, LEE Y P, et al. Studies of electromagnetically induced transparency in metamaterials[J]. Optics Express, 2010, 18(17): 17736-17747.

    [33] HANSON G W. Dyadic Green′s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.

    [34] NOVOSELOV K S, FAL V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.

    [35] NOVOSELOV K S. Room-temperature quantum Hall effect in graphene[J]. Science, 2007, 315(5817): 1379-1379.

    [36] DONG Zheng-gao. Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency[J]. Optics Express, 2010, 18(21): 22412-22417.

    FAN Tian-xin, ZHANG Hui-fang, LI Yong, HE Ying, WANG Yang, SUN Xue-mei. Tunable Double Plasmon-Induced Transparency Windowsin Metamaterial Formed by Symmetric Graphene and Split Ring Resonators Structure[J]. Acta Photonica Sinica, 2017, 46(8): 816004
    Download Citation