• International Journal of Extreme Manufacturing
  • Vol. 6, Issue 3, 32008 (2024)
Shuai-Bin Hua, Tian Jin, and Xin Guo*
Author Affiliations
  • School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/ad2c61 Cite this Article
    Shuai-Bin Hua, Tian Jin, Xin Guo. Electrochemical anodic oxidation assisted fabrication of memristors[J]. International Journal of Extreme Manufacturing, 2024, 6(3): 32008 Copy Citation Text show less
    References

    [1] Lundstrom M 2003 Moore’s law forever? Science 299 210–1

    [2] Gordon H 2015 There’s more to come from Moore Nature 520 408

    [3] Wong H S P and Salahuddin S 2015 Memory leads the way to better computing Nat. Nanotechnol. 10 191–4

    [4] Sun K X, Chen J S and Yan X B 2021 The future of memristors: materials engineering and neural networks Adv. Funct. Mater. 31 2006773

    [5] Ielmini D and Wong H S P 2018 In-memory computing with resistive switching devices Nat. Electron. 1 333–43

    [6] Dong S, Fan Z, Chen Y H, Chen K H, Qin M H, Zeng M,Lu X B, Zhou G F, Gao X S and Liu J M 2023 Performance estimation for the memristor-based computing-in-memory implementation of extremely factorized network for real-time and low-power semantic segmentation Neural Netw. 160 202–15

    [7] Pi S, Li C, Jiang H, Xia W W, Xin H L, Yang J J and Xia Q F 2019 Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension Nat. Nanotechnol. 14 35–39

    [8] Chua L 1971 Memristor-the missing circuit element IEEE Trans. Circuit Theory 18 507–19

    [9] Zhang Y et al 2021 Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging Nat. Commun. 12 7232

    [10] Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R and Williams R S 2008 Memristive switching mechanism for metal/oxide/metal nanodevices Nat. Nanotechnol.3 429–33

    [11] Chen W B, Song L K, Wang S B, Zhang Z Y, Wang G Y,Hu G H and Gao S 2023 Essential characteristics of memristors for neuromorphic computing Adv. Electron.Mater. 9 2200833

    [12] Zhong Y N, Tang J S, Li X Y, Gao B, Qian H and Wu H Q 2021 Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing Nat. Commun.12 408

    [13] Woo J, Moon K, Song J, Lee S, Kwak M, Park J and Hwang H 2016 Improved synaptic behavior under identical pulses using AlOX/HfO2 bilayer RRAM array for neuromorphic systems IEEE Electron Device Lett.37 994–7

    [14] Wang Z, Yang R, Huang H M, He H K, Shaibo J and Guo X 2020 Electroforming-free artificial synapses based on proton conduction in α-MoO3 films Adv. Electron. Mater.6 1901290

    [15] Zhu X J, Lee J and Lu W D 2017 Iodine vacancy redistribution in organic–inorganic halide perovskite films and resistive switching effects Adv. Mater. 29 1700527

    [16] Patil P P et al 2023 Self-assembled lanthanum oxide nanoflakes by electrodeposition technique for resistive switching memory and artificial synaptic devices Small 19 2303862

    [17] He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L,Zhai T Y and Guo X 2018 Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2 Small 14 1800079

    [18] Sun J C et al 2020 Lateral 2D WSe2 p–n homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics Adv. Mater. 32 1906499

    [19] Zhu X J, Li D, Liang X G and Lu W D 2019 Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing Nat. Mater. 18 141–8

    [20] Zhou K, Jia Z Q, Ma X Q, Niu W B, Zhou Y, Huang N,Ding G L, Yan Y, Han S T and Roy V A L 2023 Manufacturing of graphene based synaptic devices for optoelectronic applications Int. J. Extrem. Manuf.5 042006

    [21] Zhang B, Fan F, Xue W H, Liu G, Fu Y B, Zhuang X D,Xu X H, Gu J W, Li R W and Chen Y 2019 Redox gated polymer memristive processing memory unit Nat.Commun. 10 736

    [22] Goswami S et al 2020 Charge disproportionate molecular redox for discrete memristive and memcapacitive switching Nat. Nanotechnol. 15 380–9

    [23] Gale E 2014 TiO2-based memristors and ReRAM: materials,mechanisms and models (a review) Semicond. Sci.Technol. 29 104004

    [24] Rafiq S, Hazra J, Liehr M, Beckmann K, Abedin M,Pannu J S, Jha S K and Cady N C 2021 Investigation of ReRAM variability on flow-based edge detection computing using HfO2-based ReRAM arrays IEEE Trans.Circuits Syst. I 68 2900–10

    [25] Li Y et al 2023 An ADC-less RRAM-based computing-in-memory macro with binary CNN for efficient edge AI IEEE Trans. Circuits Syst. II 70 1871–5

    [26] Sedghi N et al 2017 The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM Appl. Phys. Lett. 110 102902

    [27] Li Y et al 2022 Mixed-precision continual learning based on computational resistance random access memory Adv.Intell. Syst. 4 2200026

    [28] Chen Y Y 2020 ReRAM: history, status, and future IEEE Trans. Electron Devices 67 1420–33

    [29] Shi T, Wang R, Wu Z H, Sun Y Z, An J J and Liu Q 2021 A review of resistive switching devices: performance improvement, characterization, and applications Small Struct. 2 2000109

    [30] Spetalnick S D, Chang M, Crafton B, Khwa W S, Chih Y D,Chang M F and Raychowdhury A 2022 A 40nm 64kb 26.56TOPS/W 2.37Mb/mm2 RRAM binary/compute-in-memory macro with 4.23x improvement in density and >75% use of sensing dynamic range Proc. 2022 IEEE Int. Solid-State Circuits Conf. (IEEE)

    [31] Hung J M et al 2022 An 8-Mb DC-current-free binary-to-8b precision ReRAM nonvolatile computing-in-memory macro using time-space-readout with 1286.4–21.6TOPS/W for edge-AI devices Proc. 2022 IEEE Int. Solid-State Circuits Conf. (IEEE)

    [32] Patil A R, Dongale T D, Kamat R K and Rajpure K Y 2023 Binary metal oxide-based resistive switching memory devices: a status review Mater. Today Commun. 34 105356

    [33] Liang C H, Terabe K, Hasegawa T and Aono M 2007 Resistance switching of an individual Ag2S/Ag nanowire heterostructure Nanotechnology 18 485202

    [34] Kamble G U, Patil A P, Kamat R K, Kim J H and Dongale T D 2023 Promising materials and synthesis methods for resistive switching memory devices: a status review ACS Appl. Electron. Mater. 5 2454–81

    [35] Zhang W Q, Gao B, Tang J S, Yao P, Yu S M, Chang M F,Yoo H J, Qian H and Wu H Q 2020 Neuro-inspired computing chips Nat. Electron. 3 371–82

    [36] Patil S M, Kundale S S, Sutar S S, Patil P J, Teli A M,Beknalkar S A, Kamat R K, Bae J, Shin J C and Dongale T D 2023 Unraveling the importance of fabrication parameters of copper oxide-based resistive switching memory devices by machine learning techniques Sci. Rep. 13 4905

    [37] Terabe K, Hasegawa T, Nakayama T and Aono M 2005 Quantized conductance atomic switch Nature 433 47–50

    [38] Wang Z R et al 2017 Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing Nat.Mater. 16 101–8

    [39] Huang H M, Yang R, Tan Z H, He H K, Zhou W, Xiong J and Guo X 2019 Quasi-Hodgkin–Huxley neurons with leaky integrate-and-fire functions physically realized with memristive devices Adv. Mater. 31 1803849

    [40] Wang Z R et al 2018 Fully memristive neural networks for pattern classification with unsupervised learning Nat.Electron. 1 137–45

    [41] Li Q Y, Tao Q Y, Chen Y, Kong L G, Shu Z W, Duan H G,Liao L and Liu Y 2021 Low voltage and robust InSe memristor using van der Waals electrodes integration Int.J. Extrem. Manuf. 3 045103

    [42] Zhu Y X, Mao H W, Zhu Y, Wang X J, Fu C Y, Ke S,Wan C J and Wan Q 2023 CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review Int. J. Extrem. Manuf. 5 042010

    [43] Gao B et al 2022 Concealable physically unclonable function chip with a memristor array Sci. Adv. 8 eabn7753

    [44] Jiang H et al 2017 A novel true random number generator based on a stochastic diffusive memristor Nat. Commun.8 882

    [45] Kundale S S et al 2023 Review of electrochemically synthesized resistive switching devices: memory storage,neuromorphic computing, and sensing applications Nanomaterials 13 1879

    [46] Wang G, Lee J H, Yang Y, Ruan G D, Kim N D, Ji Y S N and Tour J M 2015 Three-dimensional networked nanoporous Ta2O5–x memory system for ultrahigh density storage Nano Lett. 15 6009–14

    [47] Tao D W, Jiang Z J, Chen J B, Qi B J, Zhang K and Wang C W 2021 Stable resistive switching characteristics from highly ordered Cu/TiO2/Ti nanopore array membrane memristors Appl. Surf. Sci. 539 148161

    [48] Diamanti M V, Souier T, Stefancich M, Chiesa M and Pedeferri M P 2014 Probing anodic oxidation kinetics and nanoscale heterogeneity within TiO2 films by conductive atomic force microscopy and combined techniques Electrochim. Acta 129 203–10

    [49] Choi S, Jang S, Moon J H, Kim J C, Jeong H Y, Jang P,Lee K J and Wang G 2018 A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems NPG Asia Mater. 10 1097–106

    [50] Ren W F, Xu J K, Lian Z X, Sun X Q, Xu Z M and Yu H D 2022 Localized electrodeposition micro additive manufacturing of pure copper microstructures Int. J.Extrem. Manuf. 4 015101

    [51] Zaffora A, Cho D Y, Lee K S, Di Quarto F, Waser R,Santamaria M and Valov I 2017 Electrochemical tantalum oxide for resistive switching memories Adv. Mater.29 1703357

    [52] Park S O, Jeong H, Park J, Bae J and Choi S 2022 Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing Nat. Commun. 13 2888

    [53] Nirmal K A, Nhivekar G S, Khot A C, Dongale T D and Kim T G 2022 Unraveling the effect of the water content in the electrolyte on the resistive switching properties of self-assembled one-dimensional anodized TiO2 nanotubes J. Phys. Chem. Lett. 13 7870–80

    [54] Kwon S, Kim T W, Jang S, Lee J H, Kim N D, Ji Y S N,Lee C H, Tour J M and Wang G 2017 Structurally engineered nanoporous Ta2O5–x selector-less memristor for high uniformity and low power consumption ACS Appl. Mater. Interfaces 9 34015–23

    [55] Chen B S, Xu Q L, Zhao X L, Zhu X G, Kong M G and Meng G W 2010 Branched silicon nanotubes and metal nanowires via AAO-template-assistant approach Adv.Funct. Mater. 20 3791–6

    [56] Yi J B, Pan H, Lin J Y, Ding J, Feng Y P, Thongmee S, Liu T,Gong H and Wang L 2008 Ferromagnetism in ZnO nanowires derived from electro-deposition on AAO template and subsequent oxidation Adv. Mater.20 1170–4

    [57] Liang C H, Terabe K, Hasegawa T, Negishi R, Tamura T and Aono M 2005 Ionic–electronic conductor nanostructures:template-confined growth and nonlinear electrical transport Small 1 971–5

    [58] Poddar S et al 2022 Robust lead-free perovskite nanowire array-based artificial synapses exemplifying gestalt principle of closure via a letter recognition scheme Adv.Intell. Syst. 4 2200065

    [59] Liang K D, Huang C H, Lai C C, Huang J S, Tsai H W,Wang Y C, Shih Y C, Chang M T, Lo S C and Chueh Y L 2014 Single CuOx nanowire memristor: forming-free resistive switching behavior ACS Appl. Mater. Interfaces6 16537–44

    [60] Wang X F, Tian H, Zhao H M, Zhang T Y, Mao W Q,Qiao Y C, Pang Y, Li Y X, Yang Y and Ren T L 2018 Interface engineering with MoS2–Pd nanoparticles hybrid structure for a low voltage resistive switching memory Small 14 1702525

    [61] Hua Q L, Wu H Q, Gao B, Zhao M R, Li Y J, Li X Y, Hou X,Chang M F, Zhou P and Qian H 2019 A threshold switching selector based on highly ordered Ag nanodots for X-point memory applications Adv. Sci. 6 1900024

    [62] Song J M and Lee J S 2016 Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth Sci. Rep. 6 18967

    [63] Yoo J, Lee K, Tighineanu A and Schmuki P 2013 Highly ordered TiO2 nanotube-stumps with memristive response Electrochem. Commun. 34 117–80

    [64] Qu Z Z, Zhang B L, Li C F, Peng Y T, Wang L P, Li Q X,Zeng Z H and Dong J H 2021 A novel WOX-based memristor with a Ti nano-island array Electrochim. Acta 377 138123

    [65] Mazzarolo A, Curioni M, Vicenzo A, Skeldon P and Thompson G E 2012 Anodic growth of titanium oxide:electrochemical behaviour and morphological evolution Electrochim. Acta 75 288–95

    [66] Regonini D, Bowen C R, Jaroenworaluck A and Stevens R 2013 A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes Mater. Sci. Eng.R 74 377–406

    [67] Sul Y T, Johansson C B, Jeong Y and Albrektsson T 2001 The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes Med. Eng. Phys.23 329–46

    [68] Chen S C, Noori S, Villena M A, Shi Y Y, Han T T, Zuo Y,Pedeferri M, Strukov D, Lanza M and Diamanti M V 2019 Memristive electronic synapses made by anodic oxidation Chem. Mater. 31 8394–401

    [69] Yasuda K, Macak J M, Berger S, Ghicov A and Schmuki P 2007 Mechanistic aspects of the self-organization process for oxide nanotube formation on valve metals J.Electrochem. Soc. 154 C472–8

    [70] Chen J, Wu Y L, Zhu K L, Sun F, Guo C G, Wu X L,Cheng G A and Zheng R T 2019 Core-shell copper nanowire-TiO2 nanotube arrays with excellent bipolar resistive switching properties Electrochim. Acta 316 133–42

    [71] Choi S H, Park S O, Seo S and Choi S 2022 Reliable multilevel memristive neuromorphic devices based on amorphous matrix via quasi-1D filament confinement and buffer layer Sci. Adv. 8 eabj7866

    [72] Dorosheva I B, Vokhmintsev A S, Kamalov R V,Gryaznov A O and Weinstein I A 2019 Oxide layer thickness effects on the resistance switching characteristics of Ti/TiO2-NT/Au structure Proc. 2018 Ural Symp. on Biomedical Engineering, Radioelectronics and Information Technology (IEEE)

    [73] Hazra A, Jan A, Tripathi A, Kundu S, Boppidi P K R and Gangopadhyay S 2020 Optimized resistive switching in TiO2 nanotubes by modulation of oxygen vacancy through chemical reduction IEEE Trans. Electron Devices67 2197–204

    [74] Vokhmintsev A S, Weinstein I A, Kamalov R V and Dorosheva I B 2014 Memristive effect in a nanotubular layer of anodized titanium dioxide Bull. Russ. Acad. Sci.78 932–5

    [75] Han U B and Lee J S 2016 Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory Sci. Rep. 6 25537

    [76] Lyu S H and Lee J S 2012 Highly scalable resistive switching memory cells using pore-size-controlled nanoporous alumina templates J. Mater. Chem. 22 1852–61

    [77] Han P D, Sun B, Cheng S, Yu F L, Jiao B X and Wu Q S 2016 Preparation of MoSe2 nano-islands array embedded in a TiO2 matrix for photo-regulated resistive switching memory J. Alloys Compd. 664 619–25

    [78] Shin Y and Lee S 2008 Self-organized regular arrays of anodic TiO2 nanotubes Nano Lett. 8 3171–3

    [79] Motola M, ˇCaplovicˇová M, Krbal M, Sopha H,Thirunavukkarasu G K, Gregor M, Plesch G and Macak J M 2020 Ti3+ doped anodic single-wall TiO2 nanotubes as highly efficient photocatalyst Electrochim.Acta 331 135374

    [80] Yip C T, Guo M, Huang H T, Zhou L M, Wang Y and Huang C J 2012 Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells Nanoscale 4 448–50

    [81] Masuda H and Fukuda K 1995 Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina Science 268 1466–8

    [82] Jessensky O, Müller F and G?sele U 1998 Self-organized formation of hexagonal pore structures in anodic alumina J. Electrochem. Soc. 145 3735–40

    [83] Jessensky O, Müller F and G?sele U 1998 Self-organized formation of hexagonal pore arrays in anodic alumina Appl. Phys. Lett. 72 1173–5

    [84] Masuda H, Yamada H, Satoh M, Asoh H, Nakao M and Tamamura T 1997 Highly ordered nanochannel-array architecture in anodic alumina Appl. Phys. Lett.71 2770–2

    [85] Giussi J M, BlaszczykLezak I, Allegretti P E, Cortizo M S and Mijangos C 2013 Tautomerizable styrenic copolymers confined in AAO templates Polymer 54 5050–7

    [86] Siket C M et al 2018 Direct writing of anodic oxides for plastic electronics npj Flex. Electron. 2 23

    [87] Sophocleous M, Mohammadian N, Majewski L A and Georgiou J 2020 Solution-processed, low voltage tantalum-based memristive switches Mater. Lett.269 127676

    [88] Zrinski I, Minenkov A, Mardare C C, Kollender J P,Lone S A, Hassel A W and Mardare A I 2021 Influence of electrolyte selection on performance of tantalum anodic oxide memristors Appl. Surf. Sci. 565 150608

    [89] Zaffora A, Macaluso R, Habazaki H, Valov I and Santamaria M 2018 Electrochemically prepared oxides for resistive switching devices Electrochim. Acta 274 103–11

    [90] Zrinski I, Mardare C C, Jinga L I, Kollender J P, Socol G,Minenkov A, Hassel A W and Mardare A I 2021 Electrolyte-dependent modification of resistive switching in anodic hafnia Nanomaterials 11 666

    [91] Zrinski I, L?fler M, Zavaˇsnik J, Cancellieri C,Jeurgens L P H, Hassel A W and Mardare A I 2022 Impact of electrolyte incorporation in anodized niobium on its resistive switching Nanomaterials 12 813

    [92] Kundozerova T V, Grishin A M, Stefanovich G B and Velichko A A 2012 Anodic Nb2O5 nonvolatile RRAM IEEE Trans. Electron Devices 59 1144–8

    [93] Zhu W, Chen T P, Liu Z, Yang M, Liu Y and Fung S 2009 Resistive switching in aluminum/anodized aluminum film structure without forming process J. Appl. Phys.106 093706

    [94] Kundale S S, Patil A P, Patil S L, Patil P B, Kamat R K,Kim D K, Kim T G and Dongale T D 2022 Effects of switching layer morphology on resistive switching behavior: a case study of electrochemically synthesized mixed-phase copper oxide memristive devices Appl.Mater. Today 27 101460

    [95] Kundozerova T and Stefanovich G 2013 Resistance switching in metal oxide thin films and its memory application Appl. Mech. Mater. 346 29–34

    [96] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 The missing memristor found Nature 453 80–83

    [97] Diamanti M V, Pisoni R, Cologni A, Brenna A, Corinto F and Pedeferri M 2016 Anodic oxidation as a means to produce memristive films J. Appl. Biomater. Funct. Mater.14 e290–5

    [98] Liang C H, Terabe K, Hasegawa T and Aono M 2008 Resistance switching in anodic oxidized amorphous TiO2 films Appl. Phys. Express 1 064002

    [99] Gokcen D, S? entürk O, Karaca E, Pekmez N ? and Pekmez K 2019 Memristive behavior of TiOx obtained via Pb(II)-assisted anodic oxidation process J. Mater. Sci.,Mater. Electron. 30 5733–43

    [100] Gul E and Gokcen D 2020 Active memristive layer deposition via Mn(II)-assisted anodic oxidation of titanium ECS J. Solid State Sci. Technol. 9 054004

    [101] Li Z N, Tian B Y, Xue K H, Wang B, Xu M, Lu H, Sun H J and Miao X S 2019 Coexistence of digital and analog resistive switching with low operation voltage in oxygen-gradient HfOx memristors IEEE Electron Device Lett. 40 1068–71

    [102] Aglieri V, Zaffora A, Lullo G, Santamaria M, Di Franco F,Cicero U L, Mosca M and Macaluso R 2018 Resistive switching in microscale anodic titanium dioxide-based memristors Superlattices Microstruct. 113 135–42

    [103] Kumar S, Strachan J P and Williams R S 2017 Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing Nature 548 318–21

    [104] Zrinski I, Minenkov A, Cancellieri C, Mardare C C,Groiss H, Hassel A W and Mardare A I 2023 Coexistence of memory and threshold resistive switching identified by combinatorial screening in niobium-tantalum system Appl.Surf. Sci. 613 155917

    [105] Zrinski I, Minenkov A, Cancellieri C, Hauert R,Mardare C C, Kollender J P, Jeurgens L P H, Groiss H,Hassel A W and Mardare A I 2022 Mixed anodic oxides for forming-free memristors revealed by combinatorial screening of hafnium-tantalum system Appl. Mater. Today 26 101270

    [106] Zrinski I, Minenkov A, Duchoslav J, Mardare C C, Groiss H,Hassel A W and Mardare A I 2022 Memristive characteristics of composite hafnium/tantalum anodic oxides Phys. Status Solidi a 219 2100751

    [107] Zrinski I, Zavaˇsnik J, Duchoslav J, Hassel A W and Mardare A 2022 Threshold switching in forming-free anodic memristors grown on Hf–Nb combinatorial thin-film alloys Nanomaterials 12 3944

    [108] Fauzi F B, Ani M H, Othman R, Azhar A Z A,Mohamed M A and Herman S H 2015 Fabrication of flexible Au/ZnO/ITO/PET memristor using dilute electrodeposition method IOP Conf. Ser.: Mater. Sci. Eng.99 012002

    [109] Sun Y H, Yan X Q, Zheng X, Liu Y C, Shen Y W and Zhang Y 2016 Influence of carrier concentration on the resistive switching characteristics of a ZnO-based memristor Nano Res. 9 1116–24

    [110] Huang J S, Lee C Y and Chin T S 2013 Forming-free bipolar memristive switching of ZnO films deposited by cyclic-voltammetry Electrochim. Acta 91 62–68

    [111] Park K and Lee J S 2016 Flexible resistive switching memory with a Ni/CuOx/Ni structure using an electrochemical deposition process Nanotechnology 27 125203

    [112] Shao Z Y, Huang H M and Guo X 2021 Optimizing linearity of weight updating in TaOx-based memristors by depression pulse scheme for neuromorphic computing Solid State Ion. 370 115746

    [113] Serb A, Bill J, Khiat A, Berdan R, Legenstein R and Prodromakis T 2016 Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses Nat. Commun. 7 12611

    [114] Lee D K, Kim G H, Sohn H and Yang M K 2020 Role of an interfacial layer in Ta2O5-based resistive switching devices for improved endurance and reliable multibit operation Phys. Status Solidi 14 1900646

    [115] Arora M R and Kelly R 1977 The structure and stoichiometry of anodic films on V, Nb, Ta, Mo and W J. Mater. Sci.12 1673–84

    [116] Huang Y C, Chen P Y, Huang K F, Chuang T C, Lin H H,Chin T S, Liu R S, Lan Y W, Chen C D and Lai C H 2014 Using binary resistors to achieve multilevel resistive switching in multilayer NiO/Pt nanowire arrays NPG Asia Mater. 6 e85

    [117] Kim S I, Lee J H, Chang Y W, Hwang S S and Yoo K H 2008 Reversible resistive switching behaviors in NiO nanowires Appl. Phys. Lett. 93 033503

    [118] Brivio S, Tallarida G, Perego D, Franz S, Deleruyelle D,Muller C and Spiga S 2012 Low-power resistive switching in Au/NiO/Au nanowire arrays Appl. Phys. Lett.101 223510

    [119] Liu D Q, Zhang C Y, Wang G, Shao Z Z, Zhu X, Wang N N and Cheng H F 2014 Nanoscale electrochemical metallization memories based on amorphous (La,Sr)MnO3 using ultrathin porous alumina masks J. Phys.D: Appl. Phys. 47 085108

    [120] Wang J Y, Li L Z, Huyan H X, Pan X Q and Nonnenmann S S 2019 Highly uniform resistive switching in HfO2 films embedded with ordered metal nanoisland arrays Adv. Funct. Mater. 29 1808430

    [121] Ahn Y, Shin H W, Lee T H, Kim W H and Son J Y 2018 Effects of a Nb nanopin electrode on the resistive random-access memory switching characteristics of NiO thin films Nanoscale 10 13443–8

    [122] Chklovskii D B, Mel B W and Svoboda K 2004 Cortical rewiring and information storage Nature 431 782–8

    [123] Jaafar A H, Gray R J, Verrelli E, O’Neill M, Kelly S M and Kemp N T 2017 Reversible optical switching memristors with tunable STDP synaptic plasticity: a route to hierarchical control in artificial intelligent systems Nanoscale 9 17091–8

    [124] Xiong J, Yang R, Shaibo J, Huang H M, He H K, Zhou W and Guo X 2019 Bienenstock, Cooper, and Munro learning rules realized in second-order memristors with tunable forgetting rate Adv. Funct. Mater. 29 1807316

    Shuai-Bin Hua, Tian Jin, Xin Guo. Electrochemical anodic oxidation assisted fabrication of memristors[J]. International Journal of Extreme Manufacturing, 2024, 6(3): 32008
    Download Citation