• Acta Photonica Sinica
  • Vol. 47, Issue 6, 623001 (2018)
ZHOU Quan1、2、*, ZHANG En-liang2, BAI Xiang-xing2, SHEN Jun2, WEI Da-peng2, and WANG Yue-feng1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20184706.0623001 Cite this Article
    ZHOU Quan, ZHANG En-liang, BAI Xiang-xing, SHEN Jun, WEI Da-peng, WANG Yue-feng. Photoelectric Characteristics for Graphene/TiO2 Heterojunction Field Effect Photodetectors[J]. Acta Photonica Sinica, 2018, 47(6): 623001 Copy Citation Text show less
    References

    [1] GAN X, SHIUE R J, GAO Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11): 883-887.

    [2] MUELLER T, XIA F, AVOURIS P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5): 297-301.

    [3] LIU C H, CHANG Y C, NORRIS T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nature Nanotechnology, 2014, 9(4): 273-278.

    [4] GUO N, HU W, JIANG T, et al. High-quality infrared imaging with graphene photodetectors at room temperature[J]. Nanoscale, 2016, 8(35): 16065.

    [5] GHANBARZADEH S, ABBASZADEH S, ADACHI M, et al. Low dark current and high dynamic range a-Si: H MSM photodetector for large area medical imaging[C\]. SPIE, 2013: 86683U.

    [6] HERRSCHER M, GRUNDMANN M, DROGE E, et al. Epitaxial liftoff InGaAs/InP MSM photodetectors on Si[J]. Electronics Letters, 2002, 31(16): 1383-1384.

    [7] CHYI J I, HONG J W, LIN W, et al. Low dark current and high linearity InGaAs MSM photodetectors[J]. Electronics Letters, 2010, 30(4): 355-356.

    [8] BROUCKAERT J, ROELKENS G, THOURHOUT D V, et al. Thin film InGaAs MSM photodetectors integrated onto silicon-on-insulator waveguide circuits[J]. Annual Symposium of the IEEE/LEOS Benelux Chapter, 2006: 117-120.

    [9] POSPISCHIL A, HUMER M, FURCHI M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands[J]. Nature Photonics, 2013, 7(11): 892-896.

    [10] XIA F, MUELLER T, LIN Y M, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12): 1-2.

    [11] ZHANG B Y, LIU T, MENG B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 2013, 4(6): 1811.

    [12] BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9-10): 351-355.

    [13] DAWLATY J M, SHIVARAMAN S, CHANDRASHEKHAR M, et al. Measurement of ultrafast carrier dynamics in epitaxial graphene[J]. Applied Physics Letters, 2008, 92(4): 042116.

    [14] XIA F, MUELLER T, LIN Y, et al. Ultrafast graphene photodetector[C\]. Lasers and Electro-Optics, 2009: 1-2.

    [15] SUN D, AIVAZIAN G, JONES A M, et al. Ultrafast hot-carrier-dominated photocurrent in graphene[J]. Nature Nanotechnology, 2012, 7(2): 114-118.

    [16] KANG C G, LEE S K, CHOE S, et al. Intrinsic photocurrent characteristics of graphene photodetectors passivated with Al(2)O(3)[J]. Optical Express, 2013, 21(20): 23391-400.

    [17] SUN P, ZHU M, WANG K, et al. Photoinduced molecular desorption from graphene films[J]. Applied Physics Letters, 2012, 101(5): 053107.

    [18] WANG J, CHENG Z, CHEN Z, et al. Graphene photodetector integrated on silicon nitride waveguide[J]. Journal of Applied Physics, 2015, 117(14): 144504.

    [19] GOO KANG C, KYUNG LEE S, YOO T J, et al. Highly sensitive wide bandwidth photodetectors using chemical vapor deposited graphene[J]. Applied Physics Letters, 2014, 104(16): 574.

    [20] FURCHI M, URICH A, POSPISCHIL A, et al. Microcavity-integrated Graphene photodetector[J]. Nano Letters, 2012, 12(6): 2773.

    [21] MIAO J, HU W, GUO N, et al. Photodetectors: high‐responsivity Graphene/InAs nanowire heterojunction near‐infrared photodetectors with distinct photocurrent on/off ratios (small 8/2015)[J]. Small, 2015, 11(8): 936.

    [22] CHEN Z, CHENG Z, WANG J, et al. High responsivity, broadband, and fast Graphene/silicon photodetector in photoconductor mode[J]. Advanced Optical Materials, 2015, 3(9): 1207-1214.

    [23] KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2011, 7(6): 363-368.

    [24] GAO L, REN W, XU H, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum[J]. Nature Communications, 2012, 3: 699.

    [25] LI Tong-cai, GUO Bao-gang, LI Tong-hong, et al. Microstructure, phase composition and hydrophilic properties of nano TiO2 film prepared by electron beam evaporation[J]. Journal of Functional Materials, 2015, 46(13): 13035-13039.

    [26] PENG Xiao-guang, WANG Yang, CAO Kai-bin, et al. Large-scale fabrication by vacuum evaporation and characterization of TiO2 thin films[J]. Journal of Functional Materials, 2008, 39(11): 1770-1773.

    [27] HUANG F, JIA F, CAI C, et al. High- and reproducible-performance Graphene/II-VI semiconductor film hybrid photodetectors[J]. Scientific Reports, 2016, 6: 28943.

    [28] WEI Zi-jun, WANG Zhi-gang, LI Chen, et al. Studies on the photoresponse in Graphene-based field-effect transistors[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(4): 704-708.

    [29] JIA K, YANG J, SU Y, et al. Stability analysis of a back-gate graphene transistor in air environment[J]. Journal of Semiconductors, 2013, 34(8): 084004.

    [30] LIAO Z M, HAN B H, ZHOU Y B, et al. Hysteresis reversion in graphene field-effect transistors[J]. Journal of Chemical Physics, 2010, 133(4): 044703.

    [31] FERRIGHI L, FAZIO G, VALENTIN C D. Charge carriers separation at the Graphene/(101) anatase TiO2 Interface[J]. Advanced Materials Interfaces, 2016, 3(6): 1500624.

    [32] LIU Y, WANG F, WANG X, et al. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors[J]. Nature Communications, 2015, 6: 8589.

    [33] KOPPENS F H, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793.

    [34] ZOU J, ZHANG Q, HUANG K, et al. Ultraviolet photodetectors based on anodic TiO2 nanotube arrays[J]. Journal of Physical Chemistry C, 2010, 114(24): 10725-10729.

    [35] SHOUGAIJAM B, LENKA T R, NGANGBAM C. Fast response time photodetector based on annealed TiO2 nanowires deposited by GLAD[C\]. Region 10 Conference (TENCON), 2017: 2757-2760.

    [36] XUE H, KONG X, LIU Z, et al. TiO2 based metal-semiconductor-metal ultraviolet photodetectors[J]. Applied Physics Letters, 2007, 90(20): 223505.

    [37] ZU X, WANG H, YI G, et al. Self-powered UV photodetector based on heterostructured TiO2 nanowire arrays and polyaniline nanoflower arrays[J]. Synthetic Metals, 2015, 200: 58-65.

    [38] FANG X, BANDO Y, LIAO M, et al. Single‐crystalline ZnS nanobelts as ultraviolet‐light sensors[J]. Advanced Materials, 2009, 21(20): 2034-2039.

    [39] HSIAO C H, CHANG S J, WANG S B, et al. ZnSe nanowire photodetector prepared on oxidized silicon substrate by molecular-beam epitaxy[J]. Journal of the Electrochemical Society, 2009, 156(4): J73-J76.

    ZHOU Quan, ZHANG En-liang, BAI Xiang-xing, SHEN Jun, WEI Da-peng, WANG Yue-feng. Photoelectric Characteristics for Graphene/TiO2 Heterojunction Field Effect Photodetectors[J]. Acta Photonica Sinica, 2018, 47(6): 623001
    Download Citation