• High Power Laser and Particle Beams
  • Vol. 35, Issue 12, 124007 (2023)
Ming Liu1、3、4, Zhenghui Mi1、3、4、*, Weimin Pan1、3、4, Rui Ge1、3、4, Feisi He1、3、4, Wenzhong Zhou1、2、3、4, Miaofu Xu1、3, and Zihan Wang1、3、4
Author Affiliations
  • 1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 2Spallation Neutron Source Science Center, Dongguan 523803, China
  • 3Key Laboratory of Particle Accelerator Physics and Technology, Chinese Academy of Sciences, Beijing 100049, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.11884/HPLPB202335.230227 Cite this Article
    Ming Liu, Zhenghui Mi, Weimin Pan, Rui Ge, Feisi He, Wenzhong Zhou, Miaofu Xu, Zihan Wang. Design of 648 MHz superconducting cavity tuner forChina Spallation Neutron Source phase II[J]. High Power Laser and Particle Beams, 2023, 35(12): 124007 Copy Citation Text show less
    Variation of cavity input power demand with frequency detuning
    Fig. 1. Variation of cavity input power demand with frequency detuning
    Plot of superconducting cavity Lorentz forcedetuning versus tuner stiffness
    Fig. 2. Plot of superconducting cavity Lorentz forcedetuning versus tuner stiffness
    Schematic of tuner design model
    Fig. 3. Schematic of tuner design model
    Diagram of tuner 3D model
    Fig. 4. Diagram of tuner 3D model
    Simulation analysis of tuner mechanical characteristics
    Fig. 5. Simulation analysis of tuner mechanical characteristics
    Diagram of mechanical tuning axial model
    Fig. 6. Diagram of mechanical tuning axial model
    Diagram of mechanical tuning axial simplifiedmodel
    Fig. 7. Diagram of mechanical tuning axial simplifiedmodel
    Diagram of piezoelectric ceramic tuning axial model
    Fig. 8. Diagram of piezoelectric ceramic tuning axial model
    Diagram of simplified piezoelectric ceramic tuning axialsimplified model
    Fig. 9. Diagram of simplified piezoelectric ceramic tuning axialsimplified model
    Variation of acceleration gradient with time during the pulse
    Fig. 10. Variation of acceleration gradient with time during the pulse
    Dynamic Lorentz force detuning during the pulse
    Fig. 11. Dynamic Lorentz force detuning during the pulse
    Superconducting cavity response during pulses (0~4 ms)
    Fig. 12. Superconducting cavity response during pulses (0~4 ms)
    Photo of tuner mounted test on 650 MHz single cell cavity
    Fig. 13. Photo of tuner mounted test on 650 MHz single cell cavity
    Plot of tuner stepper motor steps versus superconducting cavity frequency variation and tuner displacement variation
    Fig. 14. Plot of tuner stepper motor steps versus superconducting cavity frequency variation and tuner displacement variation
    working frequency/MHzbandwidth of cavity/Hzoperation modepulse frequency/Hzoperating gradient/(MV·m−1)
    648668pulse2514
    KL/(Hz·m2·MV−2) pressure sensitivity/(Hz·Pa−1) field flatness(R/Q)/Ω beam current/mA
    1.50.15> 90%31040
    operation temperture/Koperation pressure/Pamaximum allowable working pressure/MPacavity axial stiffness/(N·mm−1) tuning sensitivity/(kHz·mm−1)
    231000.2(room temperaturer), 0.4(2 K)2225171
    Table 1. Superconducting cavity operating parameters
    tuner system stiffness/(kN·mm−1) slow tuner frequency range/kHzstepper motor resolution/Hzpiezo tuner frequency range/kHzpiezo tuner resolution/Hz
    > 100> 1001014
    Table 2. Tuner system requirement parameters
    partsmaterialaxial flexibility/(mm·kN−1) axial rigidity/(kN·mm−1)
    cavityNb0.44942.225(Kc)
    front washer diskNb55Ti0.033929.52( $ {K}_{\mathrm{w}1} $)
    end washer diskNb55Ti0.0191452.24( $ {K}_{\mathrm{w}2} $)
    helium tankTi0.008996111.16( $ {K}_{\mathrm{h}} $)
    tuner bellowTi32.3270.031( $ {K}_{\mathrm{b}} $)
    tuner316L0.00796125.61( $ {K}_{\mathrm{t}} $)
    interface ringsTi0.00196509.68( $ {K}_{\mathrm{i}} $)
    piezo actuatorHP0.012580( $ {K}_{\mathrm{p}} $)
    Table 3. Mechanical properties of 648 MHz superconducting cavity
    partsforce/Ndisplacement/ ${\text{μ}}\mathrm{m} $
    piezo actuator/interface rings−2.03−0.017
    tuner bellow/end dishes−0.03−0.980
    helium tank/Front dishes−2.00−0.086
    cavity2.000.898
    Table 4. Force and displacement status of each component, when the mechanical tuner produces a displacement of \begin{document}$ 1\;{\text{μ}}{\rm{m}} $\end{document}
    partsforce/Ndisplacement/ $ {\text{μ}}{\rm{m}} $
    tuner/interface rings−2.02−0.020
    tuner bellow/end dishes−0.03−0.980
    helium tank/front dishes−1.99−0.085
    cavity1.990.895
    Table 5. Force and displacement status of each component, when the piezoelectric ceramics produces a displacement of \begin{document}$ 1\;{\text{μ}}{\rm{m}} $\end{document}
    stateLFD factor/ (Hz·m2·MV−2) maximum detuning/Hz
    without tuner9.321827
    with tuner1.48290
    Table 6. Lorentz force detuning parameters before and after installing the tuner
    Ming Liu, Zhenghui Mi, Weimin Pan, Rui Ge, Feisi He, Wenzhong Zhou, Miaofu Xu, Zihan Wang. Design of 648 MHz superconducting cavity tuner forChina Spallation Neutron Source phase II[J]. High Power Laser and Particle Beams, 2023, 35(12): 124007
    Download Citation