• Chinese Journal of Lasers
  • Vol. 47, Issue 9, 901005 (2020)
Guan Xianghe1、2、3, Zhang Yanli1、2, Zhang Junyong1、2, and Zhu Jianqiang1、2
Author Affiliations
  • 1National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Shanghai 201800, China
  • 2National Laboratory on High Power Laser and Physics, China Academy of Engineering Physics,Chinese Academy of Sciences, Shanghai 201800, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL202047.0901005 Cite this Article Set citation alerts
    Guan Xianghe, Zhang Yanli, Zhang Junyong, Zhu Jianqiang. Broadband Output Characteristics of Nd∶Glass Multi-Pass Amplification System[J]. Chinese Journal of Lasers, 2020, 47(9): 901005 Copy Citation Text show less
    Normalized distribution of input pulse under different energies. (a) Time waveform; (b) spectrum
    Fig. 1. Normalized distribution of input pulse under different energies. (a) Time waveform; (b) spectrum
    Normalized distribution of output pulse under different input energies. (a) Time waveform; (b) spectrum
    Fig. 2. Normalized distribution of output pulse under different input energies. (a) Time waveform; (b) spectrum
    Normalized distribution of compressed pulse under different input energies. (a) Waveform of compressed pulses at the linearity coordinate; (b) waveform of compressed pulses at the logarithm coordinate
    Fig. 3. Normalized distribution of compressed pulse under different input energies. (a) Waveform of compressed pulses at the linearity coordinate; (b) waveform of compressed pulses at the logarithm coordinate
    Relative intensity distribution of input pulse under different spectral widths. (a) Time waveform; (b) spectrum
    Fig. 4. Relative intensity distribution of input pulse under different spectral widths. (a) Time waveform; (b) spectrum
    Relative intensity distribution of output pulse under different input spectral widths. (a) Time waveform; (b) spectrum
    Fig. 5. Relative intensity distribution of output pulse under different input spectral widths. (a) Time waveform; (b) spectrum
    Relative intensity distribution of compressed pulse under different input spectral widths. (a) Waveform of compressed pulses at the linearity coordinate; (b) waveform of compressed pulses at the logarithm coordinate
    Fig. 6. Relative intensity distribution of compressed pulse under different input spectral widths. (a) Waveform of compressed pulses at the linearity coordinate; (b) waveform of compressed pulses at the logarithm coordinate
    Relative intensity distribution of input pulse under different pulse widths. (a) Time waveform; (b) spectrum
    Fig. 7. Relative intensity distribution of input pulse under different pulse widths. (a) Time waveform; (b) spectrum
    Relative intensity distribution of output pulse under different input pulse widths. (a) Time waveform; (b) spectrum
    Fig. 8. Relative intensity distribution of output pulse under different input pulse widths. (a) Time waveform; (b) spectrum
    Relative intensity distribution of compressed pulse under different input pulse widths. (a) Waveform of compressed pulses at the linearity coordinate; (b) waveform of compressed pulses at the logarithm coordinate
    Fig. 9. Relative intensity distribution of compressed pulse under different input pulse widths. (a) Waveform of compressed pulses at the linearity coordinate; (b) waveform of compressed pulses at the logarithm coordinate
    Inversion pulse. (a) Normalized time waveform; (b) normalized spectrum
    Fig. 10. Inversion pulse. (a) Normalized time waveform; (b) normalized spectrum
    Output pulse. (a) Normalized time waveform; (b) normalized spectrum
    Fig. 11. Output pulse. (a) Normalized time waveform; (b) normalized spectrum
    Comparison of the spectrum obtained by two methods
    Fig. 12. Comparison of the spectrum obtained by two methods
    Spatial and temporal distribution of normalized intensity of input pulse. (a) Time waveform at different coordinate points; (b) one-dimensional spatial distribution at different times; (c) spectrum at different coordinate points
    Fig. 13. Spatial and temporal distribution of normalized intensity of input pulse. (a) Time waveform at different coordinate points; (b) one-dimensional spatial distribution at different times; (c) spectrum at different coordinate points
    Spatial and temporal distribution of normalized intensity of output pulse. (a) Time waveform at different coordinate points; (b) one-dimensional spatial distribution at different times; (c) spectrum at different coordinate points
    Fig. 14. Spatial and temporal distribution of normalized intensity of output pulse. (a) Time waveform at different coordinate points; (b) one-dimensional spatial distribution at different times; (c) spectrum at different coordinate points
    Inputenergy /JInputwidth /nsInputspectralwidth /nmOutputenergy /JOutputwidth /nsOutputspectralwidth /nmB-integralCompressedpulsewidth /ns10-8 SNRwidth /ps
    0.45102384.61.9123.8260.69710.40210.86
    0.65103346.01.9333.8690.99420.41211.10
    0.85104196.41.9513.9041.26490.42611.32
    1.05104956.71.9663.9341.51330.44411.52
    Table 1. Effect of input pulse energy on amplification system
    Inputenergy /JInputwidth /nsInputspectralwidth /nmOutputenergy /JOutputwidth /nsOutput spectralwidth /nmB-integralCompressedpulsewidth /ns10-8 SNRwidth /ps
    0.8546487.23.7613.0091.14380.75211.99
    0.8565586.93.0263.6331.18470.56411.57
    0.8584814.52.4033.6091.22760.47711.39
    0.85104196.41.9513.9041.26490.42611.32
    Table 2. Effect of input pulse spectral width on amplification system
    Inputenergy /JInputwidth /nsInputspectralwidth /nmOutputenergy /JOutputwidth /nsOutput spectralwidth /nmB-integralCompressedpulsewidth /ns10-8 SNRwidth /ps
    0.84.0104196.81.5613.9051.58120.45211.57
    0.84.5104196.61.7563.9051.40550.43611.42
    0.85.0104196.41.9513.9041.26490.42611.32
    0.85.5104196.32.1463.9041.14990.41911.23
    0.86.0104196.32.3413.9041.05400.41411.18
    Table 3. Effect of input pulse width on amplification system
    Idealpulseenergy /JInversiontimesInversionpulseenergy /JInversionpulsewidth /nsInversionpulsespectrumwidth /nmB-integralPredictedpulseenergy /JPredictedpulsewidth /psPredictedpulsespectralwidth /nmRelativepowerdeviation /%
    200050.29934.0178.0340.59502000.01.9003.8010.0021
    300060.48143.9167.8310.91253000.11.9003.8010.0023
    400060.69013.7867.5701.24464000.11.9003.8020.0017
    Table 4. Inverting input pulses and predicting output pulses
    Guan Xianghe, Zhang Yanli, Zhang Junyong, Zhu Jianqiang. Broadband Output Characteristics of Nd∶Glass Multi-Pass Amplification System[J]. Chinese Journal of Lasers, 2020, 47(9): 901005
    Download Citation